Unverified Commit 87eddedf authored by Xiaoyu Zhang's avatar Xiaoyu Zhang Committed by GitHub
Browse files

[ci] fix ci test fused_moe op (#5102)

parent 40652482
......@@ -76,6 +76,7 @@ suites = {
TestFile("test_create_kvindices.py", 2),
TestFile("test_hicache.py", 60),
TestFile("test_hicache_mla.py", 90),
TestFile("test_fused_moe.py", 30),
TestFile("test_triton_moe_channel_fp8_kernel.py", 25),
],
"per-commit-2-gpu": [
......
......@@ -3,7 +3,6 @@ import unittest
import torch
import torch.nn.functional as F
from tqdm import tqdm
from vllm.model_executor.layers.fused_moe import fused_moe as fused_moe_vllm
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_moe
......@@ -45,7 +44,18 @@ class TestFusedMOE(CustomTestCase):
else:
return 1e-2, 1e-2 # Default values for other types
def torch_naive_moe(self, a, w1, w2, score, topk):
def torch_naive_moe(
self,
a,
w1,
w2,
score,
topk,
w1_scale=None,
w2_scale=None,
a1_scale=None,
a2_scale=None,
):
B, D = a.shape
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
......@@ -53,12 +63,30 @@ class TestFusedMOE(CustomTestCase):
topk_weight, topk_ids = torch.topk(score, topk)
topk_weight = topk_weight.view(-1)
topk_ids = topk_ids.view(-1)
for i in range(w1.shape[0]):
if w1.dtype == torch.float8_e4m3fn:
w1_compute = w1.to(a.dtype)
w2_compute = w2.to(a.dtype)
if w1_scale is not None:
w1_compute = (w1_compute * w1_scale.view(-1, 1, 1)).to(a.dtype)
if w2_scale is not None:
w2_compute = (w2_compute * w2_scale.view(-1, 1, 1)).to(a.dtype)
if a1_scale is not None:
a = (a * a1_scale).to(a.dtype)
if a2_scale is not None:
a = (a * a2_scale).to(a.dtype)
else:
w1_compute = w1
w2_compute = w2
for i in range(w1_compute.shape[0]):
mask = topk_ids == i
if mask.sum():
out[mask] = SiluAndMul()(a[mask] @ w1[i].transpose(0, 1)) @ w2[
i
].transpose(0, 1)
out[mask] = SiluAndMul()(
a[mask] @ w1_compute[i].transpose(0, 1)
) @ w2_compute[i].transpose(0, 1)
return (
out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)
).sum(dim=1)
......@@ -98,21 +126,12 @@ class TestFusedMOE(CustomTestCase):
a2_scale=a2_scale,
)
vllm_output = fused_moe_vllm(
a,
w1,
w2,
score,
topk,
renormalize=False,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
torch_output = self.torch_naive_moe(
a, w1, w2, score, topk, w1_scale, w2_scale, a1_scale, a2_scale
)
torch.testing.assert_close(
sglang_output, torch_output, rtol=rtol, atol=atol
)
torch.testing.assert_close(sglang_output, vllm_output, rtol=rtol, atol=atol)
else:
a = self.create_random_cuda_tensor((m, k), dtype)
......@@ -127,8 +146,8 @@ class TestFusedMOE(CustomTestCase):
)
def test_various_configurations(self):
m_values = [1, 33, 64, 222, 1024 * 128]
n_values = [128, 1024, 2048]
m_values = [1, 33, 64, 222]
n_values = [128, 1024]
k_values = [128, 511, 1024]
dtypes = [torch.float16, torch.bfloat16]
fp8_modes = [False, True]
......@@ -171,6 +190,7 @@ class TestFusedMOE(CustomTestCase):
dtype,
use_fp8_w8a8=use_fp8_w8a8,
)
torch.cuda.empty_cache()
pbar.update(1)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment