Unverified Commit 83646089 authored by Leng Yue's avatar Leng Yue Committed by GitHub
Browse files

add model: qwen2-audio (#7596)

parent da3890e8
...@@ -593,6 +593,7 @@ multimodal_model_archs = [ ...@@ -593,6 +593,7 @@ multimodal_model_archs = [
"Mistral3ForConditionalGeneration", "Mistral3ForConditionalGeneration",
"MultiModalityCausalLM", "MultiModalityCausalLM",
"MllamaForConditionalGeneration", "MllamaForConditionalGeneration",
"Qwen2AudioForConditionalGeneration",
"Qwen2VLForConditionalGeneration", "Qwen2VLForConditionalGeneration",
"Qwen2_5_VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration",
"KimiVLForConditionalGeneration", "KimiVLForConditionalGeneration",
......
...@@ -59,6 +59,7 @@ class SeparatorStyle(IntEnum): ...@@ -59,6 +59,7 @@ class SeparatorStyle(IntEnum):
METAMATH = auto() METAMATH = auto()
DeepSeekVL2 = auto() DeepSeekVL2 = auto()
QWEN2_VL_EMBED = auto() QWEN2_VL_EMBED = auto()
QWEN2_AUDIO = auto()
GEMMA3 = auto() GEMMA3 = auto()
MPT = auto() MPT = auto()
...@@ -350,6 +351,23 @@ class Conversation: ...@@ -350,6 +351,23 @@ class Conversation:
else: else:
ret += role ret += role
return ret return ret
elif self.sep_style == SeparatorStyle.QWEN2_AUDIO:
ret = "" if system_prompt == "" else system_prompt + self.sep
counter = 1
for role, message in self.messages:
if message:
while self.audio_token in message:
message = message.replace(
self.audio_token, self.audio_token.format(idx=counter), 1
)
counter += 1
ret += role + "\n" + message + self.sep
else:
ret += role + "\n"
return ret
else: else:
raise ValueError(f"Invalid style: {self.sep_style}") raise ValueError(f"Invalid style: {self.sep_style}")
...@@ -904,6 +922,20 @@ register_conv_template( ...@@ -904,6 +922,20 @@ register_conv_template(
) )
register_conv_template(
Conversation(
name="qwen2-audio",
system_template="<|im_start|>system\n{system_message}",
system_message="You are a helpful assistant.",
roles=("<|im_start|>user", "<|im_start|>assistant"),
sep="<|im_end|>\n",
sep_style=SeparatorStyle.QWEN2_AUDIO,
stop_str=["<|im_end|>"],
audio_token="Audio {idx}: <|audio_bos|><|AUDIO|><|audio_eos|>\n",
)
)
@register_conv_template_matching_function @register_conv_template_matching_function
def match_internvl(model_path: str): def match_internvl(model_path: str):
if re.search(r"internvl2_5", model_path, re.IGNORECASE): if re.search(r"internvl2_5", model_path, re.IGNORECASE):
...@@ -956,6 +988,8 @@ def match_qwen_chat_ml(model_path: str): ...@@ -956,6 +988,8 @@ def match_qwen_chat_ml(model_path: str):
return "gme-qwen2-vl" return "gme-qwen2-vl"
if re.search(r"qwen.*vl", model_path, re.IGNORECASE): if re.search(r"qwen.*vl", model_path, re.IGNORECASE):
return "qwen2-vl" return "qwen2-vl"
if re.search(r"qwen.*audio", model_path, re.IGNORECASE):
return "qwen2-audio"
if re.search( if re.search(
r"llava-v1\.6-34b|llava-v1\.6-yi-34b|llava-next-video-34b|llava-onevision-qwen2", r"llava-v1\.6-34b|llava-v1\.6-yi-34b|llava-next-video-34b|llava-onevision-qwen2",
model_path, model_path,
......
import re
from typing import List, Union
import torch
from sglang.srt.managers.multimodal_processors.base_processor import (
BaseMultimodalProcessor,
MultimodalSpecialTokens,
)
from sglang.srt.managers.schedule_batch import Modality, MultimodalDataItem
from sglang.srt.models.qwen2_audio import Qwen2AudioForConditionalGeneration
class Qwen2AudioMultimodalProcessor(BaseMultimodalProcessor):
models = [Qwen2AudioForConditionalGeneration]
def __init__(self, hf_config, server_args, _processor):
super().__init__(hf_config, server_args, _processor)
self.AUDIO_TOKEN = "<|audio_bos|><|AUDIO|><|audio_eos|>"
self.AUDIO_TOKEN_REGEX = re.compile(
r"<\|audio_bos\|>(?:<\|AUDIO\|>)+<\|audio_eos\|>"
)
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
input_text,
request_obj,
max_req_input_len,
**kwargs,
):
audio_data = request_obj.audio_data
if not isinstance(audio_data, list):
audio_data = [audio_data]
base_output = self.load_mm_data(
prompt=input_text,
max_req_input_len=max_req_input_len,
audio_data=audio_data,
multimodal_tokens=MultimodalSpecialTokens(
audio_token=self.AUDIO_TOKEN,
audio_token_regex=self.AUDIO_TOKEN_REGEX,
),
)
if base_output is None:
return None
res = self.process_mm_data(
input_text=base_output.input_text,
audio=base_output.audios,
)
# Collect special token ids
tokenizer = self._processor.tokenizer
audio_start_id = tokenizer.convert_tokens_to_ids("<|audio_bos|>")
audio_token_id = tokenizer.convert_tokens_to_ids("<|AUDIO|>")
audio_end_id = tokenizer.convert_tokens_to_ids("<|audio_eos|>")
items = []
input_ids = res["input_ids"].flatten()
if (
"input_features" in res
and res["input_features"] is not None
and len(res["input_features"]) != 0
):
if audio_start_id is not None and audio_end_id is not None:
audio_offsets = self.get_mm_items_offset_by_pair(
input_ids=input_ids,
mm_start_id=audio_start_id,
mm_end_id=audio_end_id,
)
else:
audio_offsets = None
input_lengths = res["feature_attention_mask"].sum(dim=-1)
input_lengths = (input_lengths - 1) // 2 + 1
output_lengths = (input_lengths - 2) // 2 + 1
item = MultimodalDataItem(
audio_features=res["input_features"],
audio_feature_lens=output_lengths,
audio_offsets=audio_offsets,
modality=Modality.AUDIO,
)
items += [item]
return {
"mm_items": items,
"input_ids": input_ids.tolist(),
"audio_start_id": audio_start_id,
"audio_token_id": audio_token_id,
"audio_end_id": audio_end_id,
}
...@@ -425,6 +425,7 @@ class Qwen2ForCausalLM(nn.Module): ...@@ -425,6 +425,7 @@ class Qwen2ForCausalLM(nn.Module):
quant_config=quant_config, quant_config=quant_config,
prefix=add_prefix("lm_head", prefix), prefix=add_prefix("lm_head", prefix),
) )
else: else:
# ranks other than the last rank will have a placeholder layer # ranks other than the last rank will have a placeholder layer
self.lm_head = PPMissingLayer() self.lm_head = PPMissingLayer()
......
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/1d45d90e5d1552eccb6d8cc9b7bba283ccefb808/src/transformers/models/qwen2_audio/modeling_qwen2_audio.py
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2-Audio model compatible with HuggingFace weights."""
import logging
import math
from functools import lru_cache, partial
from typing import Any, Iterable, List, Optional, Tuple, Type, TypedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers import AutoTokenizer, Qwen2AudioEncoderConfig, Qwen2Config
from transformers.activations import ACT2FN
from transformers.models.qwen2_audio.configuration_qwen2_audio import Qwen2AudioConfig
from transformers.models.qwen2_audio.modeling_qwen2_audio import (
Qwen2AudioEncoder,
Qwen2AudioMultiModalProjector,
)
from sglang.srt.hf_transformers_utils import get_processor
from sglang.srt.layers.activation import QuickGELU
from sglang.srt.layers.attention.vision import VisionAttention
from sglang.srt.layers.linear import ColumnParallelLinear, RowParallelLinear
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.utils import get_layer_id
from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
from sglang.srt.managers.mm_utils import (
MultiModalityDataPaddingPatternMultimodalTokens,
general_mm_embed_routine,
)
from sglang.srt.managers.schedule_batch import MultimodalDataItem, MultimodalInputs
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.qwen2 import Qwen2ForCausalLM
from sglang.srt.utils import add_prefix
logger = logging.getLogger(__name__)
class Qwen2AudioForConditionalGeneration(nn.Module):
# BitandBytes specific attributes
default_bitsandbytes_target_modules = [
".gate_proj.",
".down_proj.",
".up_proj.",
".q_proj.",
".k_proj.",
".v_proj.",
".o_proj.",
]
bitsandbytes_stacked_params_mapping = {
# shard_name, weight_name, index
"q_proj": ("qkv_proj", 0),
"k_proj": ("qkv_proj", 1),
"v_proj": ("qkv_proj", 2),
"gate_proj": ("gate_up_proj", 0),
"up_proj": ("gate_up_proj", 1),
}
def __init__(
self,
config: Qwen2AudioConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
if getattr(self.config, "audio_config", None) is None:
self.config.audio_config = Qwen2AudioEncoderConfig(
self.config._name_or_path
)
if getattr(self.config, "text_config", None) is None:
self.config.text_config = Qwen2Config(self.config._name_or_path)
self.audio_tower = Qwen2AudioEncoder(
config.audio_config,
)
self.multi_modal_projector = Qwen2AudioMultiModalProjector(config)
self.language_model = Qwen2ForCausalLM(
config.text_config, quant_config, prefix=add_prefix("model", prefix)
)
def pad_input_ids(self, input_ids: List[int], mm_inputs: MultimodalInputs):
# Get all special token IDs for audio
audio_token_id: int = getattr(
mm_inputs, "audio_token_id", mm_inputs.im_token_id
)
pattern = MultiModalityDataPaddingPatternMultimodalTokens([audio_token_id])
return pattern.pad_input_tokens(input_ids, mm_inputs)
def get_audio_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
# Extract audio features from input items
input_features = torch.cat([item.audio_features for item in items], dim=0).type(
self.audio_tower.dtype
)
audio_embeds = self.audio_tower(input_features).last_hidden_state
audio_embeds = self.multi_modal_projector(audio_embeds)
audio_feature_lens = torch.cat([item.audio_feature_lens for item in items])
new_embeds = []
for i, d in zip(audio_feature_lens, audio_embeds):
new_embeds.append(d[: i.item()])
return torch.cat(new_embeds, dim=0)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
**kwargs: Any,
) -> torch.Tensor:
hidden_states = general_mm_embed_routine(
input_ids=input_ids,
forward_batch=forward_batch,
language_model=self.language_model,
audio_data_embedding_func=self.get_audio_feature,
positions=positions,
)
return hidden_states
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
if self.config.text_config.tie_word_embeddings and "lm_head.weight" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name or "audio_tower" in name:
continue
name_tmp = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name_tmp.endswith(".bias") and name_tmp not in params_dict:
continue
param = params_dict[name_tmp]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
try:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
except KeyError:
print(params_dict.keys())
raise
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
EntryClass = Qwen2AudioForConditionalGeneration
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment