Unverified Commit 81262c7b authored by Xiaoyu Zhang's avatar Xiaoyu Zhang Committed by GitHub
Browse files

clean up useless file (#3192)

parent 27aeb4b7
import itertools
import torch
import triton
from sgl_kernel import sampling_scaling_penalties
def sampling_scaling_penalties_naive(logits, scaling_penalties):
return torch.where(
logits > 0, logits / scaling_penalties, logits * scaling_penalties
)
def sampling_scaling_penalties_kernel(logits, scaling_penalties):
return sampling_scaling_penalties(logits, scaling_penalties)
def test_memory(func, _iter):
total_mem = []
for _ in range(_iter):
torch.cuda.memory.reset_peak_memory_stats()
func()
mem = torch.cuda.max_memory_allocated() / (2**20)
total_mem.append(mem)
return sum(total_mem) / len(total_mem)
def calculate_diff(batch_size, vocab_size):
dtype = torch.bfloat16
device = torch.device("cuda")
logits = torch.randn(batch_size, vocab_size, device=device, dtype=dtype)
scaling_penalties = (
torch.rand(batch_size, vocab_size, device=device, dtype=dtype) + 0.5
)
output_naive = sampling_scaling_penalties_naive(
logits.clone(), scaling_penalties.clone()
)
output_kernel = sampling_scaling_penalties_kernel(
logits.clone(), scaling_penalties.clone()
)
print(f"Naive output={output_naive}")
print(f"Kernel output={output_kernel}")
if torch.allclose(output_naive, output_kernel, atol=1e-2, rtol=1e-2):
print("✅ Both implementations match")
else:
print("❌ Implementations differ")
batch_size_range = [2**i for i in range(0, 12)]
vocab_size_range = [2**i for i in range(10, 17)]
configs = list(itertools.product(batch_size_range, vocab_size_range))
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "vocab_size"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["naive", "kernel"],
line_names=["PyTorch Naive", "SGL Kernel"],
styles=[("blue", "-"), ("red", "-")],
ylabel="us",
plot_name="sampling-scaling-penalties-performance",
args={},
)
)
def benchmark(batch_size, vocab_size, provider):
dtype = torch.bfloat16
device = torch.device("cuda")
logits = torch.randn(batch_size, vocab_size, device=device, dtype=dtype)
scaling_penalties = (
torch.rand(batch_size, vocab_size, device=device, dtype=dtype) + 0.5
)
quantiles = [0.5, 0.2, 0.8]
if provider == "naive":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: sampling_scaling_penalties_naive(
logits.clone(),
scaling_penalties.clone(),
),
quantiles=quantiles,
)
else:
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: sampling_scaling_penalties_kernel(
logits.clone(),
scaling_penalties.clone(),
),
quantiles=quantiles,
)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "vocab_size"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["naive", "kernel"],
line_names=["PyTorch Naive", "SGL Kernel"],
styles=[("blue", "-"), ("red", "-")],
ylabel="GPU memory usage (MB)",
plot_name="sampling-scaling-penalties-memory",
args={},
)
)
def benchmark_memory(batch_size, vocab_size, provider):
dtype = torch.bfloat16
device = torch.device("cuda")
print(
f"Running memory benchmark with batch_size={batch_size}, vocab_size={vocab_size}, provider={provider}"
)
def run_kernel():
logits = torch.randn(batch_size, vocab_size, device=device, dtype=dtype)
scaling_penalties = (
torch.rand(batch_size, vocab_size, device=device, dtype=dtype) + 0.5
)
if provider == "naive":
return sampling_scaling_penalties_naive(logits, scaling_penalties)
else:
return sampling_scaling_penalties_kernel(logits, scaling_penalties)
mem = test_memory(run_kernel, _iter=10)
return mem
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_path",
type=str,
default="./configs/benchmark_ops/sampling_scaling_penalties/",
help="Path to save sampling_scaling_penalties benchmark results",
)
args = parser.parse_args()
# Run correctness test
calculate_diff(batch_size=4, vocab_size=4096)
# Run performance benchmark
benchmark.run(print_data=True, save_path=args.save_path)
# Run memory benchmark
benchmark_memory.run(print_data=True, save_path=args.save_path)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment