Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
804d250a
Unverified
Commit
804d250a
authored
Mar 18, 2025
by
Xiaoyu Zhang
Committed by
GitHub
Mar 17, 2025
Browse files
remove useless backend forward in rotary_embedding (#4500)
parent
dd865bef
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
70 deletions
+0
-70
python/sglang/srt/layers/rotary_embedding.py
python/sglang/srt/layers/rotary_embedding.py
+0
-70
No files found.
python/sglang/srt/layers/rotary_embedding.py
View file @
804d250a
...
...
@@ -169,76 +169,6 @@ class RotaryEmbedding(CustomOp):
)
return
query
,
key
def
forward_xpu
(
self
,
positions
:
torch
.
Tensor
,
query
:
torch
.
Tensor
,
key
:
torch
.
Tensor
,
offsets
:
Optional
[
torch
.
Tensor
]
=
None
,
)
->
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]:
from
vllm._ipex_ops
import
ipex_ops
as
ops
self
.
cos_sin_cache
=
self
.
cos_sin_cache
.
to
(
positions
.
device
,
dtype
=
query
.
dtype
)
ops
.
rotary_embedding
(
positions
,
query
,
key
,
self
.
head_size
,
self
.
cos_sin_cache
,
self
.
is_neox_style
,
)
return
query
,
key
def
forward_hpu
(
self
,
positions
:
torch
.
Tensor
,
query
:
torch
.
Tensor
,
key
:
torch
.
Tensor
,
offsets
:
Optional
[
torch
.
Tensor
]
=
None
,
)
->
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]:
from
habana_frameworks.torch.hpex.kernels
import
(
RotaryPosEmbeddingMode
,
apply_rotary_pos_emb
,
)
positions
=
positions
.
flatten
()
if
offsets
is
not
None
:
positions
=
positions
+
offsets
num_tokens
=
positions
.
shape
[
0
]
cos_sin
=
self
.
cos_sin_cache
.
index_select
(
0
,
positions
).
view
(
num_tokens
,
1
,
-
1
)
cos
,
sin
=
cos_sin
.
chunk
(
2
,
dim
=-
1
)
# HPU RoPE kernel requires hidden dimension for cos and sin to be equal
# to query hidden dimension, so the original tensors need to be
# expanded
# GPT-NeoX kernel requires position_ids = None, offset, mode = BLOCKWISE
# and expansion of cos/sin tensors via concatenation
# GPT-J kernel requires position_ids = None, offset = 0, mode = PAIRWISE
# and expansion of cos/sin tensors via repeat_interleave
rope_mode
:
RotaryPosEmbeddingMode
if
self
.
is_neox_style
:
rope_mode
=
RotaryPosEmbeddingMode
.
BLOCKWISE
cos
=
torch
.
cat
((
cos
,
cos
),
dim
=-
1
)
sin
=
torch
.
cat
((
sin
,
sin
),
dim
=-
1
)
else
:
rope_mode
=
RotaryPosEmbeddingMode
.
PAIRWISE
sin
=
torch
.
repeat_interleave
(
sin
,
2
,
dim
=-
1
,
output_size
=
cos_sin
.
shape
[
-
1
])
cos
=
torch
.
repeat_interleave
(
cos
,
2
,
dim
=-
1
,
output_size
=
cos_sin
.
shape
[
-
1
])
query_shape
=
query
.
shape
query
=
query
.
view
(
num_tokens
,
-
1
,
self
.
head_size
)
query_rot
=
query
[...,
:
self
.
rotary_dim
]
query_pass
=
query
[...,
self
.
rotary_dim
:]
query_rot
=
apply_rotary_pos_emb
(
query_rot
,
cos
,
sin
,
None
,
0
,
rope_mode
)
query
=
torch
.
cat
((
query_rot
,
query_pass
),
dim
=-
1
).
reshape
(
query_shape
)
key_shape
=
key
.
shape
key
=
key
.
view
(
num_tokens
,
-
1
,
self
.
head_size
)
key_rot
=
key
[...,
:
self
.
rotary_dim
]
key_pass
=
key
[...,
self
.
rotary_dim
:]
key_rot
=
apply_rotary_pos_emb
(
key_rot
,
cos
,
sin
,
None
,
0
,
rope_mode
)
key
=
torch
.
cat
((
key_rot
,
key_pass
),
dim
=-
1
).
reshape
(
key_shape
)
return
query
,
key
def
extra_repr
(
self
)
->
str
:
s
=
f
"head_size=
{
self
.
head_size
}
, rotary_dim=
{
self
.
rotary_dim
}
"
s
+=
f
", max_position_embeddings=
{
self
.
max_position_embeddings
}
"
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment