Commit 7f6f2f0f authored by Ying Sheng's avatar Ying Sheng
Browse files

Update readme (#731)

parent 7802df1e
......@@ -14,13 +14,14 @@ The core features include:
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
## News
- [2024/04] 🔥 SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
- [2024/02] 🔥 SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
- [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
- [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
<details>
<summary>More</summary>
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).
</details>
......@@ -58,6 +59,7 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
### Method 3: Using docker
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](docker).
Repalce `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
```bash
docker run --gpus all \
......@@ -411,15 +413,12 @@ for out in state.text_iter():
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
## Benchmark And Performance
- Llama-7B on NVIDIA A10G, FP16, Tensor Parallelism=1
![llama_7b](assets/llama_7b.jpg)
- Mixtral-8x7B on NVIDIA A10G, FP16, Tensor Parallelism=8
![mixtral_8x7b](assets/mixtral_8x7b.jpg)
## Benchmark And Performance
![8b_throughput](https://lmsys.org/images/blog/sglang_llama3/8b_throughput.svg)
![70b_fp8_throughput](https://lmsys.org/images/blog/sglang_llama3/70b_fp8_throughput.svg)
- Learn more about the above [results](docs/benchmark_results.md).
- Synthetic latency and throughput benchmark [scripts](https://github.com/sgl-project/sglang/tree/main/benchmark/latency_throughput).
Learn more at this [blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/).
## Roadmap
[Development Roadmap (2024 Q3)](https://github.com/sgl-project/sglang/issues/634)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment