Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
7bad7e75
"examples/vscode:/vscode.git/clone" did not exist on "6ce55e4b011275e43404034832b40648b1483ff6"
Unverified
Commit
7bad7e75
authored
Jan 24, 2025
by
Ke Bao
Committed by
GitHub
Jan 24, 2025
Browse files
Add shapes for int8 gemm benchmark (#3093)
parent
1c4e0d24
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
94 additions
and
3 deletions
+94
-3
sgl-kernel/benchmark/bench_int8_gemm.py
sgl-kernel/benchmark/bench_int8_gemm.py
+94
-3
No files found.
sgl-kernel/benchmark/bench_int8_gemm.py
View file @
7bad7e75
import
argparse
import
copy
import
itertools
import
torch
import
torch
import
triton
import
triton
from
sgl_kernel
import
int8_scaled_mm
from
sgl_kernel
import
int8_scaled_mm
...
@@ -8,6 +12,56 @@ def to_int8(tensor: torch.Tensor) -> torch.Tensor:
...
@@ -8,6 +12,56 @@ def to_int8(tensor: torch.Tensor) -> torch.Tensor:
return
torch
.
round
(
tensor
.
clamp
(
min
=-
128
,
max
=
127
)).
to
(
dtype
=
torch
.
int8
)
return
torch
.
round
(
tensor
.
clamp
(
min
=-
128
,
max
=
127
)).
to
(
dtype
=
torch
.
int8
)
WEIGHT_SHAPES
=
{
"meta-llama/Llama-3.1-8B-Instruct"
:
[
([
4096
,
6144
],
1
),
([
4096
,
4096
],
0
),
([
4096
,
28672
],
1
),
([
14336
,
4096
],
0
),
],
"meta-llama/Llama-3.3-70B-Instruct"
:
[
([
8192
,
10240
],
1
),
([
8192
,
8192
],
0
),
([
8192
,
57344
],
1
),
([
28672
,
8192
],
0
),
],
"mistralai/Mistral-Large-Instruct-2407"
:
[
([
12288
,
14336
],
1
),
([
12288
,
12288
],
0
),
([
12288
,
57344
],
1
),
([
28672
,
12288
],
0
),
],
"Qwen/Qwen2.5-7B-Instruct"
:
[
([
3584
,
4608
],
1
),
([
3584
,
3584
],
0
),
([
3584
,
37888
],
1
),
([
18944
,
3584
],
0
),
],
"Qwen/Qwen2.5-32B-Instruct"
:
[
([
5120
,
7168
],
1
),
([
5120
,
5120
],
0
),
([
5120
,
55296
],
1
),
([
27648
,
5120
],
0
),
],
"Qwen/Qwen2.5-72B-Instruct"
:
[
([
8192
,
10240
],
1
),
([
8192
,
8192
],
0
),
([
8192
,
59136
],
1
),
([
29568
,
8192
],
0
),
],
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
:
[
([
2048
,
3072
],
1
),
([
2048
,
4096
],
1
),
([
2048
,
2048
],
0
),
([
2048
,
576
],
0
),
([
2048
,
21888
],
1
),
([
10944
,
2048
],
0
),
([
2048
,
2816
],
1
),
([
1408
,
2048
],
0
),
],
}
@
triton
.
testing
.
perf_report
(
@
triton
.
testing
.
perf_report
(
triton
.
testing
.
Benchmark
(
triton
.
testing
.
Benchmark
(
x_names
=
[
"batch_size"
],
x_names
=
[
"batch_size"
],
...
@@ -22,8 +76,8 @@ def to_int8(tensor: torch.Tensor) -> torch.Tensor:
...
@@ -22,8 +76,8 @@ def to_int8(tensor: torch.Tensor) -> torch.Tensor:
args
=
{},
args
=
{},
)
)
)
)
def
benchmark
(
batch_size
,
provider
):
def
benchmark
(
batch_size
,
provider
,
N
,
K
):
M
,
N
,
K
=
batch_size
,
4096
,
8192
M
=
batch_size
a
=
to_int8
(
torch
.
randn
((
M
,
K
),
device
=
"cuda"
)
*
5
)
a
=
to_int8
(
torch
.
randn
((
M
,
K
),
device
=
"cuda"
)
*
5
)
b
=
to_int8
(
torch
.
randn
((
N
,
K
),
device
=
"cuda"
).
t
()
*
5
)
b
=
to_int8
(
torch
.
randn
((
N
,
K
),
device
=
"cuda"
).
t
()
*
5
)
scale_a
=
torch
.
randn
((
M
,),
device
=
"cuda"
,
dtype
=
torch
.
float32
)
scale_a
=
torch
.
randn
((
M
,),
device
=
"cuda"
,
dtype
=
torch
.
float32
)
...
@@ -52,4 +106,41 @@ def benchmark(batch_size, provider):
...
@@ -52,4 +106,41 @@ def benchmark(batch_size, provider):
return
gbps
(
ms
),
gbps
(
max_ms
),
gbps
(
min_ms
)
return
gbps
(
ms
),
gbps
(
max_ms
),
gbps
(
min_ms
)
benchmark
.
run
(
print_data
=
True
,
show_plots
=
True
,
save_path
=
"bench_int8_res"
)
def
prepare_shapes
(
args
):
KN_model_names
=
[]
models_tps
=
list
(
itertools
.
product
(
args
.
models
,
args
.
tp_sizes
))
for
model
,
tp_size
in
models_tps
:
assert
model
in
WEIGHT_SHAPES
for
KN
,
tp_split_dim
in
copy
.
deepcopy
(
WEIGHT_SHAPES
[
model
]):
KN
[
tp_split_dim
]
=
KN
[
tp_split_dim
]
//
tp_size
KN
.
append
(
model
)
KN_model_names
.
append
(
KN
)
return
KN_model_names
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--models"
,
nargs
=
"+"
,
type
=
str
,
default
=
[
"meta-llama/Llama-3.1-8B-Instruct"
],
help
=
"List of models to benchmark"
,
)
parser
.
add_argument
(
"--tp-sizes"
,
nargs
=
"+"
,
type
=
int
,
default
=
[
1
],
help
=
"List of tensor parallel sizes"
,
)
args
=
parser
.
parse_args
()
KN_model_names
=
prepare_shapes
(
args
)
for
K
,
N
,
model_name
in
KN_model_names
:
print
(
f
"
{
model_name
}
N=
{
N
}
K=
{
K
}
: "
)
benchmark
.
run
(
print_data
=
True
,
show_plots
=
True
,
save_path
=
"bench_int8_res"
,
N
=
N
,
K
=
K
)
print
(
"Benchmark finished!"
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment