Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
7863e436
Unverified
Commit
7863e436
authored
Dec 28, 2024
by
Yineng Zhang
Committed by
GitHub
Dec 28, 2024
Browse files
add configs for block fp8 related kernels (#2628)
Co-authored-by:
HandH1998
<
1335248067@qq.com
>
parent
333e3bfd
Changes
37
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2726 additions
and
34 deletions
+2726
-34
benchmark/kernels/fused_moe_triton/tuning_fused_moe_triton.py
...hmark/kernels/fused_moe_triton/tuning_fused_moe_triton.py
+51
-8
python/sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
...H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
...me=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/moe/fused_moe_triton/fused_moe.py
python/sglang/srt/layers/moe/fused_moe_triton/fused_moe.py
+47
-26
python/sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
...H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
...me=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
...H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
...me=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
...H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
...me=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
...H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
...me=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
...H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
...me=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
...H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
...me=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
...H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
...me=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
...H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
python/sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
...me=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
+146
-0
No files found.
benchmark/kernels/fused_moe_triton/tuning_fused_moe_triton.py
View file @
7863e436
...
@@ -39,6 +39,7 @@ def benchmark_config(
...
@@ -39,6 +39,7 @@ def benchmark_config(
dtype
:
torch
.
dtype
,
dtype
:
torch
.
dtype
,
use_fp8_w8a8
:
bool
,
use_fp8_w8a8
:
bool
,
use_int8_w8a16
:
bool
,
use_int8_w8a16
:
bool
,
block_shape
:
List
[
int
]
=
None
,
num_iters
:
int
=
100
,
num_iters
:
int
=
100
,
)
->
float
:
)
->
float
:
init_dtype
=
torch
.
float16
if
use_fp8_w8a8
else
dtype
init_dtype
=
torch
.
float16
if
use_fp8_w8a8
else
dtype
...
@@ -83,10 +84,23 @@ def benchmark_config(
...
@@ -83,10 +84,23 @@ def benchmark_config(
)
)
w2_scale
=
torch
.
randn
((
hidden_size
,
num_experts
),
dtype
=
torch
.
float32
)
w2_scale
=
torch
.
randn
((
hidden_size
,
num_experts
),
dtype
=
torch
.
float32
)
if
use_fp8_w8a8
:
if
use_fp8_w8a8
:
w1_scale
=
torch
.
randn
(
num_experts
,
dtype
=
torch
.
float32
)
if
block_shape
is
None
:
w2_scale
=
torch
.
randn
(
num_experts
,
dtype
=
torch
.
float32
)
w1_scale
=
torch
.
randn
(
num_experts
,
dtype
=
torch
.
float32
)
a1_scale
=
torch
.
randn
(
1
,
dtype
=
torch
.
float32
)
w2_scale
=
torch
.
randn
(
num_experts
,
dtype
=
torch
.
float32
)
a2_scale
=
torch
.
randn
(
1
,
dtype
=
torch
.
float32
)
a1_scale
=
torch
.
randn
(
1
,
dtype
=
torch
.
float32
)
a2_scale
=
torch
.
randn
(
1
,
dtype
=
torch
.
float32
)
else
:
block_n
,
block_k
=
block_shape
[
0
],
block_shape
[
1
]
n_tiles_w1
=
(
shard_intermediate_size
+
block_n
-
1
)
//
block_n
n_tiles_w2
=
(
hidden_size
+
block_n
-
1
)
//
block_n
k_tiles_w1
=
(
hidden_size
+
block_k
-
1
)
//
block_k
k_tiles_w2
=
(
shard_intermediate_size
//
2
+
block_k
-
1
)
//
block_k
w1_scale
=
torch
.
rand
(
(
num_experts
,
n_tiles_w1
,
k_tiles_w1
),
dtype
=
torch
.
float32
)
w2_scale
=
torch
.
rand
(
(
num_experts
,
n_tiles_w2
,
k_tiles_w2
),
dtype
=
torch
.
float32
)
w1
=
w1
.
to
(
torch
.
float8_e4m3fn
)
w1
=
w1
.
to
(
torch
.
float8_e4m3fn
)
w2
=
w2
.
to
(
torch
.
float8_e4m3fn
)
w2
=
w2
.
to
(
torch
.
float8_e4m3fn
)
...
@@ -114,6 +128,7 @@ def benchmark_config(
...
@@ -114,6 +128,7 @@ def benchmark_config(
w2_scale
=
w2_scale
,
w2_scale
=
w2_scale
,
a1_scale
=
a1_scale
,
a1_scale
=
a1_scale
,
a2_scale
=
a2_scale
,
a2_scale
=
a2_scale
,
block_shape
=
block_shape
,
)
)
# JIT compilation & warmup
# JIT compilation & warmup
...
@@ -192,6 +207,7 @@ class BenchmarkWorker:
...
@@ -192,6 +207,7 @@ class BenchmarkWorker:
dtype
:
torch
.
dtype
,
dtype
:
torch
.
dtype
,
use_fp8_w8a8
:
bool
,
use_fp8_w8a8
:
bool
,
use_int8_w8a16
:
bool
,
use_int8_w8a16
:
bool
,
block_shape
:
List
[
int
],
)
->
Tuple
[
Dict
[
str
,
int
],
float
]:
)
->
Tuple
[
Dict
[
str
,
int
],
float
]:
torch
.
cuda
.
manual_seed_all
(
0
)
torch
.
cuda
.
manual_seed_all
(
0
)
dtype_str
=
get_config_dtype_str
(
dtype_str
=
get_config_dtype_str
(
...
@@ -199,8 +215,10 @@ class BenchmarkWorker:
...
@@ -199,8 +215,10 @@ class BenchmarkWorker:
)
)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
# is the intermediate size after silu_and_mul.
block_n
=
block_shape
[
0
]
if
block_shape
else
0
block_k
=
block_shape
[
1
]
if
block_shape
else
0
op_config
=
get_moe_configs
(
op_config
=
get_moe_configs
(
num_experts
,
shard_intermediate_size
//
2
,
dtype_str
num_experts
,
shard_intermediate_size
//
2
,
dtype_str
,
block_n
,
block_k
)
)
if
op_config
is
None
:
if
op_config
is
None
:
config
=
get_default_config
(
config
=
get_default_config
(
...
@@ -223,6 +241,7 @@ class BenchmarkWorker:
...
@@ -223,6 +241,7 @@ class BenchmarkWorker:
dtype
,
dtype
,
use_fp8_w8a8
,
use_fp8_w8a8
,
use_int8_w8a16
,
use_int8_w8a16
,
block_shape
,
)
)
return
config
,
kernel_time
return
config
,
kernel_time
...
@@ -236,6 +255,7 @@ class BenchmarkWorker:
...
@@ -236,6 +255,7 @@ class BenchmarkWorker:
dtype
:
torch
.
dtype
,
dtype
:
torch
.
dtype
,
use_fp8_w8a8
:
bool
,
use_fp8_w8a8
:
bool
,
use_int8_w8a16
:
bool
,
use_int8_w8a16
:
bool
,
block_shape
:
List
[
int
],
search_space
:
List
[
Dict
[
str
,
int
]],
search_space
:
List
[
Dict
[
str
,
int
]],
)
->
Dict
[
str
,
int
]:
)
->
Dict
[
str
,
int
]:
best_config
=
None
best_config
=
None
...
@@ -252,6 +272,7 @@ class BenchmarkWorker:
...
@@ -252,6 +272,7 @@ class BenchmarkWorker:
dtype
,
dtype
,
use_fp8_w8a8
,
use_fp8_w8a8
,
use_int8_w8a16
,
use_int8_w8a16
,
block_shape
,
num_iters
=
10
,
num_iters
=
10
,
)
)
except
triton
.
runtime
.
autotuner
.
OutOfResources
:
except
triton
.
runtime
.
autotuner
.
OutOfResources
:
...
@@ -287,6 +308,7 @@ def save_configs(
...
@@ -287,6 +308,7 @@ def save_configs(
dtype
:
torch
.
dtype
,
dtype
:
torch
.
dtype
,
use_fp8_w8a8
:
bool
,
use_fp8_w8a8
:
bool
,
use_int8_w8a16
:
bool
,
use_int8_w8a16
:
bool
,
block_shape
:
List
[
int
],
)
->
None
:
)
->
None
:
dtype_str
=
get_config_dtype_str
(
dtype_str
=
get_config_dtype_str
(
dtype
,
use_int8_w8a16
=
use_int8_w8a16
,
use_fp8_w8a8
=
use_fp8_w8a8
dtype
,
use_int8_w8a16
=
use_int8_w8a16
,
use_fp8_w8a8
=
use_fp8_w8a8
...
@@ -295,7 +317,10 @@ def save_configs(
...
@@ -295,7 +317,10 @@ def save_configs(
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
# is the intermediate size after silu_and_mul.
filename
=
get_config_file_name
(
filename
=
get_config_file_name
(
num_experts
,
shard_intermediate_size
//
2
,
dtype_str
num_experts
,
shard_intermediate_size
//
2
,
dtype_str
,
block_shape
,
)
)
print
(
f
"Writing best config to
{
filename
}
..."
)
print
(
f
"Writing best config to
{
filename
}
..."
)
...
@@ -323,10 +348,10 @@ def main(args: argparse.Namespace):
...
@@ -323,10 +348,10 @@ def main(args: argparse.Namespace):
topk
=
config
.
num_experts_per_tok
topk
=
config
.
num_experts_per_tok
intermediate_size
=
config
.
moe_intermediate_size
intermediate_size
=
config
.
moe_intermediate_size
shard_intermediate_size
=
2
*
intermediate_size
//
args
.
tp_size
shard_intermediate_size
=
2
*
intermediate_size
//
args
.
tp_size
elif
config
.
architectures
[
0
]
==
"DeepseekV2ForCausalLM"
:
elif
config
.
architectures
[
0
]
in
[
"DeepseekV2ForCausalLM"
,
"DeepseekV3ForCausalLM"
]
:
E
=
config
.
n_routed_experts
E
=
config
.
n_routed_experts
topk
=
config
.
num_experts_per_tok
topk
=
config
.
num_experts_per_tok
intermediate_size
=
config
.
intermediate_size
intermediate_size
=
config
.
moe_
intermediate_size
shard_intermediate_size
=
2
*
intermediate_size
//
args
.
tp_size
shard_intermediate_size
=
2
*
intermediate_size
//
args
.
tp_size
else
:
else
:
# Default: Mixtral
# Default: Mixtral
...
@@ -339,6 +364,13 @@ def main(args: argparse.Namespace):
...
@@ -339,6 +364,13 @@ def main(args: argparse.Namespace):
dtype
=
config
.
torch_dtype
dtype
=
config
.
torch_dtype
use_fp8_w8a8
=
args
.
dtype
==
"fp8_w8a8"
use_fp8_w8a8
=
args
.
dtype
==
"fp8_w8a8"
use_int8_w8a16
=
args
.
dtype
==
"int8_w8a16"
use_int8_w8a16
=
args
.
dtype
==
"int8_w8a16"
block_shape
=
None
if
(
hasattr
(
config
,
"quantization_config"
)
and
"weight_block_size"
in
config
.
quantization_config
):
block_shape
=
config
.
quantization_config
[
"weight_block_size"
]
assert
len
(
block_shape
)
==
2
if
args
.
batch_size
is
None
:
if
args
.
batch_size
is
None
:
batch_sizes
=
[
batch_sizes
=
[
...
@@ -381,6 +413,14 @@ def main(args: argparse.Namespace):
...
@@ -381,6 +413,14 @@ def main(args: argparse.Namespace):
if
args
.
tune
:
if
args
.
tune
:
search_space
=
get_configs_compute_bound
()
search_space
=
get_configs_compute_bound
()
if
block_shape
is
not
None
:
block_n
,
block_k
=
block_shape
[
0
],
block_shape
[
1
]
search_space
=
[
config
for
config
in
search_space
if
block_n
%
config
[
"BLOCK_SIZE_N"
]
==
0
and
block_k
%
config
[
"BLOCK_SIZE_K"
]
==
0
]
print
(
f
"Start tuning over
{
len
(
search_space
)
}
configurations..."
)
print
(
f
"Start tuning over
{
len
(
search_space
)
}
configurations..."
)
start
=
time
.
time
()
start
=
time
.
time
()
...
@@ -396,6 +436,7 @@ def main(args: argparse.Namespace):
...
@@ -396,6 +436,7 @@ def main(args: argparse.Namespace):
dtype
,
dtype
,
use_fp8_w8a8
,
use_fp8_w8a8
,
use_int8_w8a16
,
use_int8_w8a16
,
block_shape
,
search_space
,
search_space
,
)
)
for
batch_size
in
batch_sizes
for
batch_size
in
batch_sizes
...
@@ -413,6 +454,7 @@ def main(args: argparse.Namespace):
...
@@ -413,6 +454,7 @@ def main(args: argparse.Namespace):
dtype
,
dtype
,
use_fp8_w8a8
,
use_fp8_w8a8
,
use_int8_w8a16
,
use_int8_w8a16
,
block_shape
,
)
)
end
=
time
.
time
()
end
=
time
.
time
()
print
(
f
"Tuning took
{
end
-
start
:.
2
f
}
seconds"
)
print
(
f
"Tuning took
{
end
-
start
:.
2
f
}
seconds"
)
...
@@ -429,6 +471,7 @@ def main(args: argparse.Namespace):
...
@@ -429,6 +471,7 @@ def main(args: argparse.Namespace):
dtype
,
dtype
,
use_fp8_w8a8
,
use_fp8_w8a8
,
use_int8_w8a16
,
use_int8_w8a16
,
block_shape
,
)
)
for
batch_size
in
batch_sizes
for
batch_size
in
batch_sizes
],
],
...
...
python/sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"2"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"3072"
:
{
"BLOCK_SIZE_M"
:
128
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
4
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
}
}
python/sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
5
},
"2"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
4
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
},
"3072"
:
{
"BLOCK_SIZE_M"
:
128
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
4
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
3
}
}
python/sglang/srt/layers/moe/fused_moe_triton/fused_moe.py
View file @
7863e436
...
@@ -392,14 +392,25 @@ def invoke_fused_moe_kernel(
...
@@ -392,14 +392,25 @@ def invoke_fused_moe_kernel(
)
)
def
get_config_file_name
(
E
:
int
,
N
:
int
,
dtype
:
Optional
[
str
])
->
str
:
def
get_config_file_name
(
E
:
int
,
N
:
int
,
dtype
:
Optional
[
str
],
block_shape
:
Optional
[
int
]
=
None
)
->
str
:
device_name
=
get_device_name
().
replace
(
" "
,
"_"
)
device_name
=
get_device_name
().
replace
(
" "
,
"_"
)
dtype_selector
=
""
if
not
dtype
else
f
",dtype=
{
dtype
}
"
dtype_selector
=
""
if
not
dtype
else
f
",dtype=
{
dtype
}
"
return
f
"E=
{
E
}
,N=
{
N
}
,device_name=
{
device_name
}{
dtype_selector
}
.json"
block_shape_selector
=
(
""
if
not
block_shape
or
not
all
(
block_shape
)
else
f
",block_shape=
{
block_shape
}
"
)
return
f
"E=
{
E
}
,N=
{
N
}
,device_name=
{
device_name
}{
dtype_selector
}{
block_shape_selector
}
.json"
@
functools
.
lru_cache
@
functools
.
lru_cache
def
get_moe_configs
(
E
:
int
,
N
:
int
,
dtype
:
Optional
[
str
])
->
Optional
[
Dict
[
int
,
Any
]]:
def
get_moe_configs
(
E
:
int
,
N
:
int
,
dtype
:
Optional
[
str
],
block_n
:
Optional
[
int
]
=
0
,
block_k
:
Optional
[
int
]
=
0
,
)
->
Optional
[
Dict
[
int
,
Any
]]:
"""
"""
Return optimized configurations for the fused MoE kernel.
Return optimized configurations for the fused MoE kernel.
...
@@ -411,7 +422,7 @@ def get_moe_configs(E: int, N: int, dtype: Optional[str]) -> Optional[Dict[int,
...
@@ -411,7 +422,7 @@ def get_moe_configs(E: int, N: int, dtype: Optional[str]) -> Optional[Dict[int,
# First look up if an optimized configuration is available in the configs
# First look up if an optimized configuration is available in the configs
# directory
# directory
json_file_name
=
get_config_file_name
(
E
,
N
,
dtype
)
json_file_name
=
get_config_file_name
(
E
,
N
,
dtype
,
[
block_n
,
block_k
]
)
config_file_path
=
os
.
path
.
join
(
config_file_path
=
os
.
path
.
join
(
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
)),
"configs"
,
json_file_name
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
)),
"configs"
,
json_file_name
...
@@ -442,25 +453,38 @@ def get_default_config(
...
@@ -442,25 +453,38 @@ def get_default_config(
topk
:
int
,
topk
:
int
,
dtype
:
Optional
[
str
],
dtype
:
Optional
[
str
],
is_marlin
:
bool
,
is_marlin
:
bool
,
block_shape
:
Optional
[
List
[
int
]]
=
None
,
)
->
Dict
[
str
,
int
]:
)
->
Dict
[
str
,
int
]:
if
dtype
==
"fp8_w8a8"
:
if
dtype
==
"fp8_w8a8"
:
config
=
{
if
block_shape
is
None
:
"BLOCK_SIZE_M"
:
128
,
"BLOCK_SIZE_N"
:
256
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
8
,
"num_stages"
:
4
,
}
if
M
<=
E
:
config
=
{
config
=
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_M"
:
128
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_N"
:
256
,
"BLOCK_SIZE_K"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_warps"
:
8
,
"num_stages"
:
4
,
"num_stages"
:
4
,
}
}
if
M
<=
E
:
config
=
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
4
,
}
else
:
# Block-wise quant: BLOCK_SIZE_N must be divisable by block_shape[0]
# BLOCK_SIZE_K must be divisable by block_shape[1]
config
=
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
block_shape
[
0
],
"BLOCK_SIZE_K"
:
block_shape
[
1
],
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
3
,
}
else
:
else
:
config
=
{
config
=
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_M"
:
64
,
...
@@ -496,7 +520,9 @@ def try_get_optimal_moe_config(
...
@@ -496,7 +520,9 @@ def try_get_optimal_moe_config(
else
:
else
:
# First try to load optimal config from the file
# First try to load optimal config from the file
E
,
_
,
N
=
w2_shape
E
,
_
,
N
=
w2_shape
configs
=
get_moe_configs
(
E
,
N
,
dtype
)
block_n
=
block_shape
[
0
]
if
block_shape
else
0
block_k
=
block_shape
[
1
]
if
block_shape
else
0
configs
=
get_moe_configs
(
E
,
N
,
dtype
,
block_n
,
block_k
)
if
configs
:
if
configs
:
# If an optimal configuration map has been found, look up the
# If an optimal configuration map has been found, look up the
...
@@ -504,14 +530,9 @@ def try_get_optimal_moe_config(
...
@@ -504,14 +530,9 @@ def try_get_optimal_moe_config(
config
=
configs
[
min
(
configs
.
keys
(),
key
=
lambda
x
:
abs
(
x
-
M
))]
config
=
configs
[
min
(
configs
.
keys
(),
key
=
lambda
x
:
abs
(
x
-
M
))]
else
:
else
:
# Else use the default config
# Else use the default config
config
=
get_default_config
(
M
,
E
,
N
,
w1_shape
[
2
],
top_k
,
dtype
,
is_marlin
)
config
=
get_default_config
(
# TODO(HandH1998): Optimize the configs of block-wise quant.
M
,
E
,
N
,
w1_shape
[
2
],
top_k
,
dtype
,
is_marlin
,
block_shape
# NOTE(HandH1998): For block-wise quant,
)
# BLOCK_K must be divisable by block_shape[1]
# BLOCK_N and BLOCK_M has no requirements
if
block_shape
is
not
None
:
config
[
"BLOCK_SIZE_N"
]
=
block_shape
[
0
]
config
[
"BLOCK_SIZE_K"
]
=
block_shape
[
1
]
return
config
return
config
...
...
python/sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
python/sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json
0 → 100644
View file @
7863e436
{
"1"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2"
:
{
"BLOCK_SIZE_M"
:
16
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"8"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"16"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"24"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"32"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"48"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"64"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"96"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"128"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
32
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"256"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
64
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
32
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"512"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1024"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
64
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"1536"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"2048"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
1
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"3072"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
},
"4096"
:
{
"BLOCK_SIZE_M"
:
64
,
"BLOCK_SIZE_N"
:
128
,
"BLOCK_SIZE_K"
:
128
,
"GROUP_SIZE_M"
:
16
,
"num_warps"
:
4
,
"num_stages"
:
2
}
}
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment