Unverified Commit 70cf4abc authored by pansicheng's avatar pansicheng Committed by GitHub
Browse files

3fs zerocopy (#9109)


Co-authored-by: default avatarZhiqiang Xie <xiezhq@stanford.edu>
parent cebf4599
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/python3.12/dist-packages:/usr/local/lib/python3.12/dist-packages/torch/lib
python3 benchmark/hf3fs/bench_client.py
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/python3.12/dist-packages:/usr/local/lib/python3.12/dist-packages/torch/lib
SGLANG_HICACHE_HF3FS_CONFIG_PATH=/sgl-workspace/sglang/benchmark/hf3fs/hf3fs.json \
python3 benchmark/hf3fs/bench_storage.py
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/python3.12/dist-packages:/usr/local/lib/python3.12/dist-packages/torch/lib
export SGLANG_HICACHE_HF3FS_CONFIG_PATH=/sgl-workspace/sglang/benchmark/hf3fs/hf3fs.json
echo '{"file_path_prefix": "/data/hf3fs-test-0", "file_size": 1099511627776, "numjobs": 16, "entries": 8}' > \
${SGLANG_HICACHE_HF3FS_CONFIG_PATH}
python3 benchmark/hf3fs/bench_zerocopy.py
####################################################################################################
rm -rf nohup.out && \
......
......@@ -8,6 +8,9 @@ from typing import List
import torch
from tqdm import tqdm
from sglang.srt.mem_cache.storage.hf3fs.mini_3fs_metadata_server import (
Hf3fsLocalMetadataClient,
)
from sglang.srt.mem_cache.storage.hf3fs.storage_hf3fs import HiCacheHF3FS
......@@ -67,12 +70,15 @@ def test():
k = f"key_{i}"
v = torch.randn((numel,)).to(dtype=dtype)
ok = hicache_hf3fs.set(k, v)
assert ok, f"Failed to insert {k}"
if i < (file_size // bytes_per_page):
assert ok, f"Failed to insert {k}"
else:
assert not ok
tensors[k] = v
assert hicache_hf3fs.get("key_0") is None
assert hicache_hf3fs.get("key_1") is None
assert hicache_hf3fs.get("key_8") is None
assert hicache_hf3fs.get("key_9") is None
start = num_pages - hicache_hf3fs.num_pages
start = 0
for i in range(start, start + hicache_hf3fs.num_pages):
k = f"key_{i}"
assert hicache_hf3fs.exists(k)
......@@ -83,13 +89,16 @@ def test():
assert not hicache_hf3fs.exists("not_exists")
hicache_hf3fs.delete("key_9")
hicache_hf3fs.delete("key_7")
v2 = torch.randn((numel,)).to(dtype=dtype)
assert hicache_hf3fs.set("key_new", v2)
assert torch.allclose(hicache_hf3fs.get("key_new"), v2, atol=1e-3)
hicache_hf3fs.clear()
assert len(hicache_hf3fs.free_pages) == hicache_hf3fs.num_pages
assert (
len(hicache_hf3fs.metadata_client.rank_metadata.free_pages)
== hicache_hf3fs.metadata_client.rank_metadata.num_pages
)
# batch
num_pages = 10
......@@ -134,12 +143,14 @@ def bench():
entries = 8
dtype = store_dtype
hicache_hf3fs = HiCacheHF3FS(
rank=0,
file_path=file_path,
file_size=file_size,
numjobs=numjobs,
bytes_per_page=bytes_per_page,
entries=entries,
dtype=dtype,
metadata_client=Hf3fsLocalMetadataClient(),
)
numel = 2 * tokens_per_page * layer_num * head_num * head_dim
......@@ -167,7 +178,10 @@ def bench():
r_bw = []
r_size = num_page * bytes_per_page / (1 << 30)
for i in tqdm(range(warmup + iteration), desc="Benchmarking read (GB/s)"):
keys = random.sample(list(hicache_hf3fs.key_to_index.keys()), num_page)
keys = random.sample(
list(hicache_hf3fs.metadata_client.rank_metadata.key_to_index.keys()),
num_page,
)
tik = time.perf_counter()
results = hicache_hf3fs.batch_get(keys)
tok = time.perf_counter()
......@@ -195,12 +209,14 @@ def allclose():
entries = 8
dtype = store_dtype
hicache_hf3fs = HiCacheHF3FS(
rank=0,
file_path=file_path,
file_size=file_size,
numjobs=numjobs,
bytes_per_page=bytes_per_page,
entries=entries,
dtype=dtype,
metadata_client=Hf3fsLocalMetadataClient(),
)
numel = 2 * tokens_per_page * layer_num * head_num * head_dim
......@@ -218,7 +234,10 @@ def allclose():
read_keys, read_results = [], []
for i in tqdm(range(iteration), desc="Benchmarking read (GB/s)"):
keys = random.sample(list(hicache_hf3fs.key_to_index.keys()), num_page)
keys = random.sample(
list(hicache_hf3fs.metadata_client.rank_metadata.key_to_index.keys()),
num_page,
)
results = hicache_hf3fs.batch_get(keys)
read_keys.extend(keys)
read_results.extend(results)
......
import threading
import time
import torch
from tqdm import tqdm
from sglang.srt.distributed import (
get_world_group,
init_distributed_environment,
initialize_model_parallel,
)
from sglang.srt.managers.cache_controller import (
HiCacheController,
PrefetchOperation,
StorageOperation,
)
from sglang.srt.mem_cache.allocator import TokenToKVPoolAllocator
from sglang.srt.mem_cache.memory_pool import MHATokenToKVPool
from sglang.srt.mem_cache.memory_pool_host import MHATokenToKVPoolHost
init_distributed_environment(
world_size=1,
rank=0,
distributed_init_method="tcp://127.0.0.1:23456",
local_rank=0,
backend="gloo",
)
initialize_model_parallel(
tensor_model_parallel_size=1,
pipeline_model_parallel_size=1,
)
group = get_world_group().cpu_group
max_total_num_tokens = 524288
page_size = 64
kv_cache_dtype = torch.bfloat16
layer_num = 64
head_num, head_dim = 8, 128
device = "cuda"
hicache_ratio = 2
hicache_size = 0
hicache_mem_layout = "page_first"
# hicache_mem_layout = "layer_first"
hicache_write_policy = "write_through"
hicache_io_backend = "kernel"
hicache_storage_backend = "hf3fs"
prefetch_threshold = 256
op_size = 1024
op_num = 16
token_to_kv_pool = MHATokenToKVPool(
max_total_num_tokens,
page_size=page_size,
dtype=kv_cache_dtype,
head_num=head_num,
head_dim=head_dim,
layer_num=layer_num,
device=device,
enable_memory_saver=True,
)
token_to_kv_pool_allocator = TokenToKVPoolAllocator(
max_total_num_tokens,
dtype=kv_cache_dtype,
device=device,
kvcache=token_to_kv_pool,
need_sort=False,
)
kv_cache = token_to_kv_pool_allocator.get_kvcache()
token_to_kv_pool_host = MHATokenToKVPoolHost(
kv_cache,
hicache_ratio,
hicache_size,
page_size,
hicache_mem_layout,
)
load_cache_event = threading.Event()
cache_controller = HiCacheController(
token_to_kv_pool_allocator,
token_to_kv_pool_host,
page_size,
group,
load_cache_event=load_cache_event,
write_policy=hicache_write_policy,
io_backend=hicache_io_backend,
storage_backend=hicache_storage_backend,
prefetch_threshold=prefetch_threshold,
)
operations = [
StorageOperation(
torch.tensor(list(range(i, i + op_size))),
list(range(i, i + op_size)),
hash_value=[f"{j}" for j in range(i, i + op_size, page_size)],
)
for i in tqdm(range(0, op_num * op_size, op_size))
]
tik = time.monotonic()
if hicache_mem_layout == "page_first":
for operation in operations:
cache_controller.zerocopy_page_backup(operation, batch_size=128)
elif hicache_mem_layout == "layer_first":
for operation in operations:
cache_controller.generic_page_backup(operation, batch_size=128)
tok = time.monotonic()
print(f"{tok-tik:.6f} s")
operations = [
PrefetchOperation(
f"{i}",
torch.tensor(list(range(i, i + op_size))),
list(range(i, i + op_size)),
f"{i}",
)
for i in tqdm(range(0, op_num * op_size, op_size))
]
for operation in operations:
operation.hash_value = [
f"{j}"
for j in range(
int(operation.last_hash), int(operation.last_hash) + op_size, page_size
)
]
tik = time.monotonic()
if hicache_mem_layout == "page_first":
for operation in operations:
cache_controller.zerocopy_page_transfer(operation, batch_size=128)
elif hicache_mem_layout == "layer_first":
for operation in operations:
cache_controller.generic_page_transfer(operation, batch_size=128)
tok = time.monotonic()
print(f"{tok-tik:.6f} s")
......@@ -268,9 +268,14 @@ class HiCacheController:
)
rank = get_tensor_model_parallel_rank()
bytes_per_page = (
mem_pool_host.get_size_per_token() * mem_pool_host.page_size
)
if self.mem_pool_host.layout == "page_first":
bytes_per_page = (
mem_pool_host.get_ksize_per_token() * mem_pool_host.page_size
)
elif self.mem_pool_host.layout == "layer_first":
bytes_per_page = (
mem_pool_host.get_size_per_token() * mem_pool_host.page_size
)
dtype = mem_pool_host.dtype
self.storage_backend = HiCacheHF3FS.from_env_config(
rank, bytes_per_page, dtype
......@@ -555,13 +560,34 @@ class HiCacheController:
operation.mark_done()
return operation.completed_tokens, operation.hash_value
def zerocopy_page_transfer(self, operation, batch_size=8):
hashes, dsts = self.mem_pool_host.get_buffer_with_hash(
operation.hash_value, operation.host_indices
)
for i in range(0, len(hashes), batch_size):
page_hashes = hashes[i : i + batch_size]
page_dsts = dsts[i : i + batch_size]
page_data = self.storage_backend.batch_get(page_hashes, page_dsts)
if page_data is None:
logger.warning(
f"Prefetch operation {operation.request_id} failed to retrieve page {page_hashes}."
)
break
completed_tokens = operation.completed_tokens
if operation.increment(self.page_size * len(page_hashes)):
for i in range(len(page_hashes)):
completed_tokens += self.page_size
else:
break
def generic_page_transfer(self, operation, batch_size=8):
for i in range(0, len(operation.hash_value), batch_size):
page_hashes = operation.hash_value[i : i + batch_size]
# todo: zero copy
dummy_page_dst = [self.mem_pool_host.get_dummy_flat_data_page()] * len(
page_hashes
)
dummy_page_dst = [
self.mem_pool_host.get_dummy_flat_data_page()
for _ in range(len(page_hashes))
]
page_data = self.storage_backend.batch_get(page_hashes, dummy_page_dst)
if page_data is None:
logger.warning(
......@@ -599,7 +625,10 @@ class HiCacheController:
if self.is_mooncake_backend():
self.mooncake_page_transfer(operation)
elif self.storage_backend_type == "hf3fs":
self.generic_page_transfer(operation, batch_size=128)
if self.mem_pool_host.layout == "page_first":
self.zerocopy_page_transfer(operation, batch_size=128)
elif self.mem_pool_host.layout == "layer_first":
self.generic_page_transfer(operation, batch_size=128)
else:
self.generic_page_transfer(operation)
......@@ -716,6 +745,19 @@ class HiCacheController:
self.backup_queue.put(operation)
return operation.id
def zerocopy_page_backup(self, operation, batch_size=8):
hashes, dsts = self.mem_pool_host.get_buffer_with_hash(
operation.hash_value, operation.host_indices
)
for i in range(0, len(hashes), batch_size):
page_hashes = hashes[i : i + batch_size]
page_data = dsts[i : i + batch_size]
success = self.storage_backend.batch_set(page_hashes, page_data)
if not success:
logger.warning(f"Failed to write page {page_hashes} to storage.")
break
operation.completed_tokens += self.page_size * len(page_hashes)
def generic_page_backup(self, operation, batch_size=8):
for i in range(0, len(operation.hash_value), batch_size):
page_hashes = operation.hash_value[i : i + batch_size]
......@@ -770,7 +812,10 @@ class HiCacheController:
if self.is_mooncake_backend():
self.mooncake_page_backup(operation)
elif self.storage_backend_type == "hf3fs":
self.generic_page_backup(operation, batch_size=128)
if self.mem_pool_host.layout == "page_first":
self.zerocopy_page_backup(operation, batch_size=128)
elif self.mem_pool_host.layout == "layer_first":
self.generic_page_backup(operation, batch_size=128)
else:
self.generic_page_backup(operation)
......
......@@ -307,6 +307,9 @@ class MHATokenToKVPoolHost(HostKVCache):
return self.head_dim * self.head_num * self.layer_num * self.dtype.itemsize * 2
def get_ksize_per_token(self):
return self.get_size_per_token() // 2
def init_kv_buffer(self):
if self.layout == "layer_first":
dims = (2, self.layer_num, self.size, self.head_num, self.head_dim)
......@@ -496,6 +499,21 @@ class MHATokenToKVPoolHost(HostKVCache):
element_size_list = [element_size] * len(key_list)
return key_list, ptr_list, element_size_list
def get_buffer_with_hash(self, keys, indices):
assert self.layout == "page_first"
assert len(keys) == (len(indices) // self.page_size)
key_list = []
buf_list = []
for key, i in zip(keys, range(0, len(indices), self.page_size)):
key_list.append(f"{key}-k")
buf_list.append(self.k_buffer[i : i + self.page_size])
key_list.append(f"{key}-v")
buf_list.append(self.v_buffer[i : i + self.page_size])
return key_list, buf_list
class MLATokenToKVPoolHost(HostKVCache):
device_pool: MLATokenToKVPool
......@@ -538,6 +556,9 @@ class MLATokenToKVPoolHost(HostKVCache):
* self.layer_num
)
def get_ksize_per_token(self):
return self.get_size_per_token()
def init_kv_buffer(self):
if self.layout == "layer_first":
dims = (
......@@ -704,3 +725,14 @@ class MLATokenToKVPoolHost(HostKVCache):
)
element_size_list = [element_size] * len(key_list)
return key_list, ptr_list, element_size_list
def get_buffer_with_hash(self, keys, indices):
assert self.layout == "page_first"
assert len(keys) == (len(indices) // self.page_size)
buf_list = []
for i in range(0, len(indices), self.page_size):
buf_list.append(self.kv_buffer[i : i + self.page_size])
return keys, buf_list
......@@ -34,6 +34,9 @@ apt-get update \
python3 python3-pip \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# apt install python3.12 python3.12-venv python3.12-dev
# curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
# python3.12 get-pip.py
# Generated wheel location: dist/hf3fs_py_usrbio-1.2.9+2db69ce-cp310-cp310-linux_x86_64.whl
python3 setup.py bdist_wheel
......@@ -60,6 +63,6 @@ apt update && apt install -y \
libuv1-dev
# Install Python Package
pip install hf3fs_py_usrbio-1.2.9+2db69ce-cp310-cp310-linux_x86_64.whl
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/python3.10/dist-packages
pip install hf3fs_py_usrbio-1.2.9+394583d-cp312-cp312-linux_x86_64.whl
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/python3.12/dist-packages
```
......@@ -7,7 +7,7 @@ import signal
import threading
from abc import ABC, abstractmethod
from functools import wraps
from typing import List, Optional, Tuple
from typing import Any, List, Optional, Tuple
import torch
......@@ -228,15 +228,23 @@ class HiCacheHF3FS(HiCacheStorage):
)
def get(
self, key: str, target_location: Optional[torch.Tensor] = None
self,
key: str,
target_location: Optional[Any] = None,
target_sizes: Optional[Any] = None,
) -> torch.Tensor | None:
return self.batch_get([key], [target_location] if target_location else None)[0]
return self.batch_get(
[key],
[target_location] if target_location is not None else None,
[target_sizes] if target_sizes is not None else None,
)[0]
@synchronized()
def batch_get(
self,
keys: List[str],
target_locations: Optional[List[torch.Tensor]] = None,
target_locations: Optional[Any] = None,
target_sizes: Optional[Any] = None,
) -> List[torch.Tensor | None]:
page_indices = self.metadata_client.get_page_indices(self.rank, keys)
......@@ -246,9 +254,15 @@ class HiCacheHF3FS(HiCacheStorage):
batch_indices.append(i)
file_offsets.append(page_index * self.bytes_per_page)
file_results = [
torch.empty(self.numel, dtype=self.dtype) for _ in range(len(batch_indices))
]
if target_locations is not None:
for target_location in target_locations:
assert target_location.is_contiguous()
file_results = target_locations
else:
file_results = [
torch.empty(self.numel, dtype=self.dtype)
for _ in range(len(batch_indices))
]
futures = [
self.executor.submit(
......@@ -273,10 +287,27 @@ class HiCacheHF3FS(HiCacheStorage):
return results
def set(self, key: str, value: torch.Tensor) -> bool:
return self.batch_set([key], [value])
def set(
self,
key: str,
value: Optional[Any] = None,
target_location: Optional[Any] = None,
target_sizes: Optional[Any] = None,
) -> bool:
return self.batch_set(
[key],
[value] if value is not None else None,
[target_location] if target_location is not None else None,
[target_sizes] if target_sizes is not None else None,
)
def batch_set(self, keys: List[str], values: List[torch.Tensor]) -> bool:
def batch_set(
self,
keys: List[str],
values: Optional[Any] = None,
target_locations: Optional[Any] = None,
target_sizes: Optional[Any] = None,
) -> bool:
# Todo: Add prefix block's hash key
key_with_prefix = [(key, "") for key in keys]
indices = self.metadata_client.reserve_and_allocate_page_indices(
......@@ -292,7 +323,8 @@ class HiCacheHF3FS(HiCacheStorage):
batch_indices.append(i)
file_offsets.append(page_index * self.bytes_per_page)
file_values.append(value.contiguous())
assert value.is_contiguous()
file_values.append(value)
futures = [
self.executor.submit(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment