Unverified Commit 706bd69c authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Clean up server_args.py to have a dedicated function for model specific adjustments (#8983)

parent 23f2afb2
......@@ -26,10 +26,7 @@ jobs:
run: |
bash scripts/ci_install_dependency.sh
pip install -r docs/requirements.txt
apt-get update
apt-get install -y pandoc
apt-get update && apt-get install -y parallel retry
apt-get update && apt-get install -y pandoc parallel retry
ln -sf "$(which python3)" /usr/bin/python
- name: Setup Jupyter Kernel
......
name: Test Disaggregation Mode
name: PR Test (PD Router)
on:
push:
......
......@@ -61,7 +61,7 @@ jobs:
python3 run_suite.py --suite per-commit
unit-test-backend-1-gpu:
needs: check-changes
needs: [check-changes, unit-test-frontend]
if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') &&
github.event.pull_request.draft == false &&
needs.check-changes.outputs.src == 'true'
......@@ -85,7 +85,7 @@ jobs:
python3 run_suite.py --suite per-commit --auto-partition-id ${{ matrix.part }} --auto-partition-size 10
unit-test-backend-2-gpu:
needs: check-changes
needs: [check-changes, unit-test-frontend]
if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') &&
github.event.pull_request.draft == false &&
needs.check-changes.outputs.src == 'true'
......@@ -105,7 +105,7 @@ jobs:
python3 run_suite.py --suite per-commit-2-gpu
unit-test-backend-4-gpu:
needs: [check-changes, unit-test-frontend, unit-test-backend-2-gpu]
needs: [check-changes, unit-test-backend-2-gpu]
if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') &&
github.event.pull_request.draft == false &&
needs.check-changes.outputs.src == 'true'
......@@ -125,7 +125,7 @@ jobs:
python3 run_suite.py --suite per-commit-4-gpu
unit-test-backend-8-gpu:
needs: [check-changes, unit-test-frontend, unit-test-backend-2-gpu]
needs: [check-changes, unit-test-backend-2-gpu]
if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') &&
github.event.pull_request.draft == false &&
needs.check-changes.outputs.src == 'true'
......@@ -245,7 +245,7 @@ jobs:
python3 -m unittest test_bench_serving.TestBenchServing.test_vlm_online_latency
performance-test-2-gpu:
needs: check-changes
needs: [check-changes, unit-test-backend-2-gpu]
if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') &&
github.event.pull_request.draft == false &&
needs.check-changes.outputs.src == 'true'
......@@ -282,13 +282,13 @@ jobs:
cd test/srt
python3 -m unittest test_bench_serving.TestBenchServing.test_moe_offline_throughput_without_radix_cache
- name: Benchmark offline decode throughput (PP=2)
- name: Benchmark offline PP decode throughput (PP=2)
timeout-minutes: 10
run: |
cd test/srt
python3 -m unittest test_bench_serving.TestBenchServing.test_pp_offline_throughput_default_decode
- name: Benchmark offline prefill throughput (PP=2)
- name: Benchmark offline PP prefill throughput (PP=2)
timeout-minutes: 10
run: |
cd test/srt
......@@ -318,7 +318,7 @@ jobs:
python3 test_eval_accuracy_large.py
accuracy-test-2-gpu:
needs: check-changes
needs: [check-changes, accuracy-test-1-gpu]
if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') &&
github.event.pull_request.draft == false &&
needs.check-changes.outputs.src == 'true'
......@@ -341,7 +341,7 @@ jobs:
python3 test_moe_eval_accuracy_large.py
unit-test-deepep-4-gpu:
needs: check-changes
needs: [check-changes, unit-test-backend-2-gpu]
if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') &&
github.event.pull_request.draft == false &&
needs.check-changes.outputs.src == 'true'
......@@ -361,7 +361,7 @@ jobs:
python3 run_suite.py --suite per-commit-4-gpu-deepep
unit-test-deepep-8-gpu:
needs: [check-changes, unit-test-deepep-4-gpu]
needs: [check-changes, unit-test-backend-2-gpu]
if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') &&
github.event.pull_request.draft == false &&
needs.check-changes.outputs.src == 'true'
......@@ -380,30 +380,8 @@ jobs:
cd test/srt
python3 run_suite.py --suite per-commit-8-gpu-deepep
pr-test-finish:
needs: [
check-changes,
unit-test-frontend, unit-test-backend-1-gpu, unit-test-backend-2-gpu, unit-test-backend-4-gpu,
unit-test-backend-8-gpu, performance-test-1-gpu-part-1, performance-test-1-gpu-part-2, performance-test-2-gpu,
accuracy-test-1-gpu, accuracy-test-2-gpu, unit-test-deepep-4-gpu, unit-test-deepep-8-gpu,
]
if: needs.check-changes.outputs.src == 'true'
runs-on: ubuntu-latest
steps:
- name: Check all dependent job statuses
run: |
results=(${{ join(needs.*.result, ' ') }})
for result in "${results[@]}"; do
if [ "$result" = "failure" ] || [ "$result" = "cancelled" ]; then
echo "Job failed with result: $result"
exit 1
fi
done
echo "All jobs completed successfully"
exit 0
unit-test-backend-8-gpu-b200:
needs: [check-changes, unit-test-frontend, unit-test-backend-2-gpu]
needs: [check-changes, unit-test-backend-2-gpu]
if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') &&
github.event.pull_request.draft == false &&
needs.check-changes.outputs.src == 'true'
......@@ -416,10 +394,36 @@ jobs:
- name: Install dependencies
run: |
MODE_BLACKWELL=1 bash scripts/ci_install_dependency.sh
IS_BLACKWELL=1 bash scripts/ci_install_dependency.sh
- name: Run test
timeout-minutes: 20
run: |
cd test/srt
python3 run_suite.py --suite per-commit-8-gpu-b200 --auto-partition-id 0 --auto-partition-size 1
pr-test-finish:
needs: [
check-changes,
unit-test-frontend, unit-test-backend-1-gpu,
unit-test-backend-2-gpu, unit-test-backend-4-gpu, unit-test-backend-8-gpu,
performance-test-1-gpu-part-1, performance-test-1-gpu-part-2, performance-test-2-gpu,
accuracy-test-1-gpu, accuracy-test-2-gpu,
unit-test-deepep-4-gpu, unit-test-deepep-8-gpu,
unit-test-backend-8-gpu-b200,
]
if: needs.check-changes.outputs.src == 'true'
runs-on: ubuntu-latest
steps:
- name: Check all dependent job statuses
run: |
results=(${{ join(needs.*.result, ' ') }})
for result in "${results[@]}"; do
if [ "$result" = "failure" ] || [ "$result" = "cancelled" ]; then
echo "Job failed with result: $result"
exit 1
fi
done
echo "All jobs completed successfully"
exit 0
......@@ -30,11 +30,12 @@ jobs:
- name: Install dependencies
run: |
bash scripts/ci_install_dependency.sh
pip install "vllm==0.10.0"
pip install "vllm==0.9.0"
pip install "bitsandbytes>=0.44.0"
pip3 install torch==2.8.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu126
pip install torch==2.8.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu126
pip install "openai==1.99.1"
- name: Run VLLM dependency tests
- name: Run vLLM dependency tests
timeout-minutes: 60
run: |
cd test/srt
......
......@@ -20,13 +20,13 @@
| [**Slides**](https://github.com/sgl-project/sgl-learning-materials?tab=readme-ov-file#slides) |
## News
- [2025/08] 🔥 SGLang provides day-0 support for OpenAI gpt-oss model ([instructions](https://github.com/sgl-project/sglang/issues/8833))
- [2025/06] 🔥 SGLang, the high-performance serving infrastructure powering trillions of tokens daily, has been awarded the third batch of the Open Source AI Grant by a16z ([a16z blog](https://a16z.com/advancing-open-source-ai-through-benchmarks-and-bold-experimentation/)).
- [2025/06] 🔥 Deploying DeepSeek on GB200 NVL72 with PD and Large Scale EP (Part I): 2.7x Higher Decoding Throughput ([blog](https://lmsys.org/blog/2025-06-16-gb200-part-1/)).
- [2025/05] 🔥 Deploying DeepSeek with PD Disaggregation and Large-scale Expert Parallelism on 96 H100 GPUs ([blog](https://lmsys.org/blog/2025-05-05-large-scale-ep/)).
- [2025/03] Supercharge DeepSeek-R1 Inference on AMD Instinct MI300X ([AMD blog](https://rocm.blogs.amd.com/artificial-intelligence/DeepSeekR1-Part2/README.html))
- [2025/03] SGLang Joins PyTorch Ecosystem: Efficient LLM Serving Engine ([PyTorch blog](https://pytorch.org/blog/sglang-joins-pytorch/))
- [2024/12] v0.4 Release: Zero-Overhead Batch Scheduler, Cache-Aware Load Balancer, Faster Structured Outputs ([blog](https://lmsys.org/blog/2024-12-04-sglang-v0-4/)).
- [2024/07] v0.2 Release: Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
<details>
<summary>More</summary>
......@@ -35,6 +35,7 @@
- [2025/01] SGLang provides day one support for DeepSeek V3/R1 models on NVIDIA and AMD GPUs with DeepSeek-specific optimizations. ([instructions](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3), [AMD blog](https://www.amd.com/en/developer/resources/technical-articles/amd-instinct-gpus-power-deepseek-v3-revolutionizing-ai-development-with-sglang.html), [10+ other companies](https://x.com/lmsysorg/status/1887262321636221412))
- [2024/10] The First SGLang Online Meetup ([slides](https://github.com/sgl-project/sgl-learning-materials?tab=readme-ov-file#the-first-sglang-online-meetup)).
- [2024/09] v0.3 Release: 7x Faster DeepSeek MLA, 1.5x Faster torch.compile, Multi-Image/Video LLaVA-OneVision ([blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/)).
- [2024/07] v0.2 Release: Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).
......@@ -46,10 +47,10 @@ SGLang is a fast serving framework for large language models and vision language
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
The core features include:
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, prefill-decode disaggregation, speculative decoding, continuous batching, paged attention, tensor parallelism, pipeline parallelism, expert parallelism, structured outputs, chunked prefill, quantization (FP8/INT4/AWQ/GPTQ), and multi-lora batching.
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, prefill-decode disaggregation, speculative decoding, continuous batching, paged attention, tensor/pipeline/expert/data parallelism, structured outputs, chunked prefill, quantization (FP4/FP8/INT4/AWQ/GPTQ), and multi-lora batching.
- **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
- **Extensive Model Support**: Supports a wide range of generative models (Llama, Gemma, Mistral, Qwen, DeepSeek, LLaVA, etc.), embedding models (e5-mistral, gte, mcdse) and reward models (Skywork), with easy extensibility for integrating new models.
- **Active Community**: SGLang is open-source and backed by an active community with industry adoption.
- **Extensive Model Support**: Supports a wide range of generative models (Llama, Qwen, DeepSeek, Kimi, GPT, Gemma, Mistral, etc.), embedding models (e5-mistral, gte, mcdse) and reward models (Skywork), with easy extensibility for integrating new models.
- **Active Community**: SGLang is open-source and backed by an active community with wide industry adoption.
## Getting Started
- [Install SGLang](https://docs.sglang.ai/start/install.html)
......
......@@ -189,8 +189,8 @@ Please consult the documentation below and [server_args.py](https://github.com/s
| Arguments | Description | Defaults |
|-----------|-------------|----------|
| `--attention-backend` | Choose the kernels for attention layers. | None |
| `decode_attention_backend` | (Experimental) This argument specifies the backend for decode attention computation. Note that this argument has priority over `attention_backend`. | None |
| `prefill_attention_backend` | (Experimental) This argument specifies the backend for prefill attention computation. Note that this argument has priority over `attention_backend`. | None |
| `--prefill-attention-backend` | (Experimental) This argument specifies the backend for prefill attention computation. Note that this argument has priority over `attention_backend`. | None |
| `--decode-attention-backend` | (Experimental) This argument specifies the backend for decode attention computation. Note that this argument has priority over `attention_backend`. | None |
| `--sampling-backend` | Choose the kernels for sampling layers. | None |
| `--grammar-backend` | Choose the backend for grammar-guided decoding. | None |
| `--mm-attention-backend` | Set multimodal attention backend. | None |
......
......@@ -5,10 +5,10 @@ SGLang is a fast serving framework for large language models and vision language
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
The core features include:
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, prefill-decode disaggregation, speculative decoding, continuous batching, paged attention, tensor parallelism, pipeline parallelism, expert parallelism, structured outputs, chunked prefill, quantization (FP8/INT4/AWQ/GPTQ), and multi-lora batching.
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, prefill-decode disaggregation, speculative decoding, continuous batching, paged attention, tensor/pipeline/expert/data parallelism, structured outputs, chunked prefill, quantization (FP4/FP8/INT4/AWQ/GPTQ), and multi-lora batching.
- **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
- **Extensive Model Support**: Supports a wide range of generative models (Llama, Gemma, Mistral, Qwen, DeepSeek, LLaVA, etc.), embedding models (e5-mistral, gte, mcdse) and reward models (Skywork), with easy extensibility for integrating new models.
- **Active Community**: SGLang is open-source and backed by an active community with industry adoption.
- **Extensive Model Support**: Supports a wide range of generative models (Llama, Qwen, DeepSeek, Kimi, GPT, Gemma, Mistral, etc.), embedding models (e5-mistral, gte, mcdse) and reward models (Skywork), with easy extensibility for integrating new models.
- **Active Community**: SGLang is open-source and backed by an active community with wide industry adoption.
.. toctree::
:maxdepth: 1
......
......@@ -21,6 +21,7 @@ runtime_common = [
"build",
"compressed-tensors",
"datasets",
"einops",
"fastapi",
"hf_transfer",
"huggingface_hub",
......@@ -29,6 +30,7 @@ runtime_common = [
"modelscope",
"msgspec",
"ninja",
"openai==1.99.1",
"openai-harmony==0.0.3",
"orjson",
"outlines==0.1.11",
......@@ -48,6 +50,7 @@ runtime_common = [
"torchao==0.9.0",
"transformers==4.55.0",
"timm==1.0.16",
"tiktoken",
"uvicorn",
"uvloop",
"xgrammar==0.1.22",
......@@ -60,7 +63,6 @@ srt = [
"torchaudio==2.8.0",
"torchvision",
"cuda-python",
"einops",
"flashinfer_python==0.2.10",
]
......@@ -71,10 +73,7 @@ blackwell = [
"torchaudio==2.8.0",
"torchvision",
"cuda-python",
"einops",
"flashinfer_python==0.2.10",
"tiktoken",
"openai==1.99.1",
]
# HIP (Heterogeneous-computing Interface for Portability) for AMD
......@@ -101,7 +100,7 @@ srt_npu = ["sglang[runtime_common]"]
openai = ["openai==1.99.1", "tiktoken"]
anthropic = ["anthropic>=0.20.0"]
litellm = ["litellm>=1.0.0"]
torch_memory_saver = ["torch_memory_saver>=0.0.8"]
torch_memory_saver = ["torch_memory_saver==0.0.8"]
decord = ["decord"]
test = [
"accelerate",
......
......@@ -64,13 +64,12 @@ class ModelConfig:
hybrid_kvcache_ratio: Optional[float] = None,
model_impl: Union[str, ModelImpl] = ModelImpl.AUTO,
) -> None:
# Parse args
self.model_path = model_path
self.revision = revision
self.quantization = quantization
self.model_impl = model_impl
# Parse args
self.maybe_pull_model_tokenizer_from_remote()
self.model_override_args = json.loads(model_override_args)
kwargs = {}
......@@ -139,6 +138,7 @@ class ModelConfig:
and self.hf_config.architectures[0] == "Ernie4_5_MoeForCausalLM"
):
self.hf_config.architectures[0] = "Ernie4_5_MoeForCausalLMMTP"
# Check model type
self.is_generation = is_generation_model(
self.hf_config.architectures, is_embedding
......@@ -282,12 +282,10 @@ class ModelConfig:
# Cache attributes
self.hf_eos_token_id = self.get_hf_eos_token_id()
config = self.hf_config
# multimodal
self.image_token_id = getattr(config, "image_token_id", None) or getattr(
config, "image_token_index", None
)
self.image_token_id = getattr(
self.hf_config, "image_token_id", None
) or getattr(self.hf_config, "image_token_index", None)
@staticmethod
def from_server_args(server_args: ServerArgs, model_path: str = None, **kwargs):
......
......@@ -9,8 +9,8 @@ logger = logging.getLogger(__name__)
try:
from mcp import ClientSession
except ImportError:
logger.warning("Ignoring mcp import error")
except ImportError as e:
mcp = e
from openai_harmony import Author, Message, Role, StreamState, TextContent
......
from typing import TYPE_CHECKING, Optional, Union
from typing import Optional, Union
import torch
......
......@@ -3,7 +3,7 @@ from __future__ import annotations
import builtins
import inspect
from typing import TYPE_CHECKING, Callable, Dict, Optional, Type, Union
from typing import TYPE_CHECKING, Dict, Optional, Type
import torch
......
......@@ -37,7 +37,6 @@ from sglang.srt.utils import (
is_hip,
is_port_available,
is_remote_url,
is_triton_kernels_available,
is_valid_ipv6_address,
nullable_str,
)
......@@ -109,7 +108,7 @@ class ServerArgs:
log_level: str = "info"
log_level_http: Optional[str] = None
log_requests: bool = False
log_requests_level: int = 0
log_requests_level: int = 2
crash_dump_folder: Optional[str] = None
show_time_cost: bool = False
enable_metrics: bool = False
......@@ -131,6 +130,7 @@ class ServerArgs:
enable_cache_report: bool = False
reasoning_parser: Optional[str] = None
tool_call_parser: Optional[str] = None
tool_server: Optional[str] = None
# Data parallelism
dp_size: int = 1
......@@ -278,15 +278,11 @@ class ServerArgs:
enable_pdmux: bool = False
sm_group_num: int = 3
# For tool server
tool_server: Optional[str] = None
# Deprecated arguments
enable_ep_moe: bool = False
enable_deepep_moe: bool = False
def __post_init__(self):
# Check deprecated arguments
def print_deprecated_warning(message: str):
logger.warning(f"\033[33m{message}\033[0m")
......@@ -392,6 +388,9 @@ class ServerArgs:
self.attention_backend = "torch_native"
self.sampling_backend = "pytorch"
# Model-specific adjustments
self.model_specific_adjustments()
# Set kernel backends
if self.device == "cpu":
if self.attention_backend is None:
......@@ -470,55 +469,9 @@ class ServerArgs:
"trtllm_mha backend does not support speculative decoding yet."
)
model_arch = self.get_hf_config().architectures[0]
if model_arch in ["GptOssForCausalLM"]:
if self.attention_backend is None:
# default is triton, but we could have trtllm_mha as an option
self.attention_backend = "triton"
assert (
self.attention_backend == "trtllm_mha"
or self.attention_backend == "triton"
)
quantization_config = getattr(
self.get_hf_config(), "quantization_config", None
)
is_mxfp4_quant_format = (
quantization_config is not None
and quantization_config.get("quant_method") == "mxfp4"
)
if is_sm100_supported() and is_mxfp4_quant_format:
self.enable_flashinfer_mxfp4_moe = True
self.enable_triton_kernel_moe = False
logger.info(
"Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
)
else:
if self.enable_triton_kernel_moe:
assert (
self.ep_size == 1
), "Triton kernel MoE is only supported when ep_size == 1"
if not self.enable_triton_kernel_moe and self.ep_size == 1:
self.enable_triton_kernel_moe = True
logger.info(
"Detected GPT-OSS model, enabling triton_kernels MOE kernel."
)
self.disable_hybrid_swa_memory = True
if is_mxfp4_quant_format:
# use bf16 for mxfp4 triton kernels
self.dtype = "bfloat16"
if self.attention_backend == "dual_chunk_flash_attn":
logger.warning(
"Mixed chunk is disabled because of using dual chunk flash attention backend"
)
logger.warning(
"Radix cache is disabled because of using dual chunk flash attention backend"
)
logger.warning(
"Cuda graph is disabled because of using dual chunk flash attention backend"
"Mixed chunk, radix cache, and cuda graphs are disabled because of using dual chunk flash attention backend"
)
self.enable_mixed_chunk = False
self.disable_cuda_graph = True
......@@ -583,7 +536,7 @@ class ServerArgs:
if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
self.expert_distribution_recorder_mode = "stat"
logger.info(
logger.warning(
"EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
)
......@@ -591,9 +544,6 @@ class ServerArgs:
self.ep_dispatch_algorithm is None
):
self.ep_dispatch_algorithm = "static"
logger.info(
"EPLB is enabled or init_expert_location is provided. ep_dispatch_algorithm is configured."
)
if self.enable_eplb:
assert self.ep_size > 1 or self.moe_a2a_backend is not None
......@@ -1112,7 +1062,7 @@ class ServerArgs:
parser.add_argument(
"--log-requests-level",
type=int,
default=0,
default=ServerArgs.log_requests_level,
help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
choices=[0, 1, 2, 3],
)
......@@ -1245,6 +1195,12 @@ class ServerArgs:
default=ServerArgs.tool_call_parser,
help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', 'pythonic', 'kimi_k2', 'qwen3_coder', 'glm45', and 'step3'.",
)
parser.add_argument(
"--tool-server",
type=str,
default=None,
help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
)
# Data parallelism
parser.add_argument(
......@@ -1344,55 +1300,41 @@ class ServerArgs:
)
# Kernel backend
ATTN_BACKENDS = [
"aiter",
"cutlass_mla",
"fa3",
"flashinfer",
"flashmla",
"intel_amx",
"torch_native",
"ascend",
"triton",
"trtllm_mla",
"trtllm_mha",
"dual_chunk_flash_attn",
]
parser.add_argument(
"--attention-backend",
type=str,
choices=[
"aiter",
"cutlass_mla",
"fa3",
"flashinfer",
"flashmla",
"intel_amx",
"torch_native",
"ascend",
"triton",
"trtllm_mla",
"trtllm_mha",
"dual_chunk_flash_attn",
],
choices=ATTN_BACKENDS,
default=ServerArgs.attention_backend,
help="Choose the kernels for attention layers.",
)
parser.add_argument(
"--decode-attention-backend",
type=str,
choices=[
"flashinfer",
"triton",
"torch_native",
"fa3",
"flashmla",
"cutlass_mla",
],
default=ServerArgs.decode_attention_backend,
help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
)
parser.add_argument(
"--prefill-attention-backend",
type=str,
choices=[
"flashinfer",
"triton",
"torch_native",
"fa3",
"flashmla",
"cutlass_mla",
],
choices=ATTN_BACKENDS,
default=ServerArgs.prefill_attention_backend,
help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
)
parser.add_argument(
"--decode-attention-backend",
type=str,
choices=ATTN_BACKENDS,
default=ServerArgs.decode_attention_backend,
help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
)
parser.add_argument(
"--sampling-backend",
type=str,
......@@ -1612,7 +1554,6 @@ class ServerArgs:
default=ServerArgs.hicache_mem_layout,
help="The layout of host memory pool for hierarchical cache.",
)
parser.add_argument(
"--hicache-storage-backend",
type=str,
......@@ -1985,14 +1926,6 @@ class ServerArgs:
help="Disable mmap while loading weight using safetensors.",
)
# For tool server
parser.add_argument(
"--tool-server",
type=str,
default=None,
help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
)
# Deprecated arguments
parser.add_argument(
"--enable-ep-moe",
......@@ -2056,25 +1989,6 @@ class ServerArgs:
None,
}, "moe_dense_tp_size only support 1 and None currently"
# Check model architecture
model_arch = self.get_hf_config().architectures[0]
if "Llama4" in model_arch:
assert self.attention_backend == "fa3", "fa3 is required for Llama4 model"
if model_arch in [
"Gemma2ForCausalLM",
"Gemma3ForCausalLM",
"Gemma3ForConditionalGeneration",
"Gemma3nForCausalLM",
"Gemma3nForConditionalGeneration",
]:
# FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
# It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
logger.warning(
f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
)
self.disable_hybrid_swa_memory = True
# Check LoRA
self.check_lora_server_args()
......@@ -2100,7 +2014,7 @@ class ServerArgs:
if self.lora_paths:
if self.enable_lora is None:
self.enable_lora = True
logger.info(
logger.warning(
"--enable-lora is set to True because --lora-paths is provided."
)
elif self.enable_lora is False:
......@@ -2172,6 +2086,58 @@ class ServerArgs:
f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
)
def model_specific_adjustments(self):
hf_config = self.get_hf_config()
model_arch = hf_config.architectures[0]
if model_arch in ["GptOssForCausalLM"]:
if self.attention_backend is None:
self.attention_backend = "triton"
assert self.attention_backend in [
"triton",
"trtllm_mha",
], f"GptOssForCausalLM requires 'triton' or 'trtllm_mha' attention backend, but got {self.attention_backend}"
quantization_config = getattr(hf_config, "quantization_config", None)
is_mxfp4_quant_format = (
quantization_config is not None
and quantization_config.get("quant_method") == "mxfp4"
)
if is_sm100_supported() and is_mxfp4_quant_format:
self.enable_flashinfer_mxfp4_moe = True
self.enable_triton_kernel_moe = False
logger.warning(
"Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
)
else:
if self.enable_triton_kernel_moe:
assert (
self.ep_size == 1
), "Triton kernel MoE is only supported when ep_size == 1"
if not self.enable_triton_kernel_moe and self.ep_size == 1:
self.enable_triton_kernel_moe = True
logger.warning(
"Detected GPT-OSS model, enabling triton_kernels MOE kernel."
)
self.disable_hybrid_swa_memory = True
if is_mxfp4_quant_format:
# use bf16 for mxfp4 triton kernels
self.dtype = "bfloat16"
elif "Llama4" in model_arch:
assert self.attention_backend == "fa3", "fa3 is required for Llama4 model"
elif model_arch in [
"Gemma2ForCausalLM",
"Gemma3ForCausalLM",
"Gemma3ForConditionalGeneration",
"Gemma3nForCausalLM",
"Gemma3nForConditionalGeneration",
]:
# FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
# It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
logger.warning(
f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
)
self.disable_hybrid_swa_memory = True
def adjust_mem_fraction_for_vlm(self, model_config):
vision_config = getattr(model_config.hf_config, "vision_config", None)
if vision_config is None:
......
......@@ -2,68 +2,71 @@
# Install the dependency in CI.
set -euxo pipefail
MODE_BLACKWELL=${MODE_BLACKWELL:-0}
IS_BLACKWELL=${IS_BLACKWELL:-0}
CU_VERSION="cu126"
if [ "$MODE_BLACKWELL" = "1" ]; then
if [ "$IS_BLACKWELL" = "1" ]; then
CU_VERSION="cu129"
else
CU_VERSION="cu126"
fi
# Kill existing processes
SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
bash "${SCRIPT_DIR}/killall_sglang.sh"
if [ "$MODE_BLACKWELL" = "1" ]; then
apt-get install -y git libnuma-dev
fi
# Install apt packages
apt install -y git libnuma-dev
# Install uv
if [ "$IS_BLACKWELL" = "1" ]; then
# The blackwell CI runner has some issues with pip and uv,
# so we can only use pip with `--break-system-packages`
PIP_CMD="pip"
PIP_INSTALL_SUFFIX="--break-system-packages"
# Update pip
if [ "$MODE_BLACKWELL" != "1" ]; then
# Clean up existing installations
$PIP_CMD uninstall -y flashinfer_python sgl-kernel sglang vllm $PIP_INSTALL_SUFFIX || true
else
# In normal cases, we use uv, which is much faster than pip.
pip install --upgrade pip
fi
pip install uv
export UV_SYSTEM_PYTHON=true
# Clean up existing installations
pip uninstall -y flashinfer flashinfer_python sgl-kernel sglang vllm --break-system-packages || true
pip cache purge || true
rm -rf /root/.cache/flashinfer
# TODO handle other python versions
rm -rf /usr/local/lib/python3.10/dist-packages/flashinfer*
rm -rf /usr/local/lib/python3.10/dist-packages/sgl_kernel*
PIP_CMD="uv pip"
PIP_INSTALL_SUFFIX="--index-strategy unsafe-best-match"
# Clean up existing installations
$PIP_CMD uninstall flashinfer_python sgl-kernel sglang vllm || true
fi
# Install the main package
pip install -e "python[dev]" --extra-index-url https://download.pytorch.org/whl/${CU_VERSION} --break-system-packages
$PIP_CMD install -e "python[dev]" --extra-index-url https://download.pytorch.org/whl/${CU_VERSION} $PIP_INSTALL_SUFFIX
if [ "$MODE_BLACKWELL" = "1" ]; then
if [ "$IS_BLACKWELL" = "1" ]; then
# TODO auto determine sgl-kernel version
SGL_KERNEL_VERSION=0.3.2
pip3 install https://github.com/sgl-project/whl/releases/download/v${SGL_KERNEL_VERSION}/sgl_kernel-${SGL_KERNEL_VERSION}-cp39-abi3-manylinux2014_x86_64.whl --break-system-packages
$PIP_CMD install https://github.com/sgl-project/whl/releases/download/v${SGL_KERNEL_VERSION}/sgl_kernel-${SGL_KERNEL_VERSION}-cp39-abi3-manylinux2014_x86_64.whl --force-reinstall $PIP_INSTALL_SUFFIX
fi
# Show current packages
pip list
$PIP_CMD list
# Install additional dependencies
pip install mooncake-transfer-engine==0.3.5 nvidia-cuda-nvrtc-cu12 --break-system-packages
$PIP_CMD install mooncake-transfer-engine==0.3.5 nvidia-cuda-nvrtc-cu12 py-spy huggingface_hub[hf_xet] $PIP_INSTALL_SUFFIX
if [ "$MODE_BLACKWELL" != "1" ]; then
if [ "$IS_BLACKWELL" != "1" ]; then
# For lmms_evals evaluating MMMU
git clone --branch v0.3.3 --depth 1 https://github.com/EvolvingLMMs-Lab/lmms-eval.git
pip install -e lmms-eval/ --break-system-packages
fi
$PIP_CMD install -e lmms-eval/ $PIP_INSTALL_SUFFIX
# Install FlashMLA for attention backend tests
# pip install git+https://github.com/deepseek-ai/FlashMLA.git --break-system-packages
# Install hf_xet
pip install huggingface_hub[hf_xet] --break-system-packages
if [ "$MODE_BLACKWELL" != "1" ]; then
# Install xformers
pip install -U xformers --index-url https://download.pytorch.org/whl/${CU_VERSION} --no-deps --force-reinstall --break-system-packages
$PIP_CMD install xformers --index-url https://download.pytorch.org/whl/${CU_VERSION} --no-deps $PIP_INSTALL_SUFFIX
fi
# To help dumping traces when timeout occurred
pip install py-spy --break-system-packages
# Install FlashMLA for attention backend tests
# $PIP_CMD install git+https://github.com/deepseek-ai/FlashMLA.git $PIP_INSTALL_SUFFIX
# Show current packages
pip list
$PIP_CMD list
echo "CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES:-}"
import json
import re
import sys
def clean_json_file(input_file, output_file):
try:
# Open the input file with 'replace' option for handling bad characters
with open(input_file, "r", encoding="utf-8", errors="replace") as f:
data = f.read()
# Replace bad characters (represented by '�' after decoding) with a space
cleaned_data = data.replace("�", " ")
# Remove control characters (e.g., ASCII control characters like \x00 to \x1F)
# These can cause issues in JSON parsing.
cleaned_data = re.sub(r"[\x00-\x1F]+", " ", cleaned_data)
# Parse cleaned data as JSON
json_data = json.loads(cleaned_data)
# Write the cleaned JSON to a new output file
with open(output_file, "w", encoding="utf-8") as f:
json.dump(json_data, f, ensure_ascii=False, indent=4)
print(f"Cleaned JSON file has been saved to {output_file}")
except Exception as e:
print(f"Error: {e}")
if __name__ == "__main__":
assert len(sys.argv) > 1, "please give the input file path"
if len(sys.argv) == 3:
input_file = sys.argv[1]
output_file = sys.argv[2]
else:
input_file = output_file = sys.argv[1]
clean_json_file(input_file, output_file)
......@@ -27,7 +27,6 @@ else
lsof /dev/nvidia* | awk '{print $2}' | xargs kill -9 2>/dev/null
fi
# Show GPU status after clean up
nvidia-smi
fi
......@@ -8,8 +8,6 @@ suites = {
TestFile("test_srt_backend.py"),
# Skip this due to some OPENAI_API_KEY issues
# "test_openai_backend.py",
TestFile("test_separate_reasoning.py"),
TestFile("test_separate_reasoning_execution.py"),
],
}
......
......@@ -38,7 +38,6 @@ suites = {
TestFile("openai_server/basic/test_serving_embedding.py", 10),
TestFile("openai_server/basic/test_openai_embedding.py", 141),
TestFile("openai_server/basic/test_openai_server.py", 149),
TestFile("openai_server/features/test_cache_report.py", 100),
TestFile("openai_server/features/test_enable_thinking.py", 70),
TestFile("openai_server/features/test_json_constrained.py", 98),
TestFile("openai_server/features/test_json_mode.py", 90),
......@@ -103,7 +102,6 @@ suites = {
TestFile("test_update_weights_from_disk.py", 114),
TestFile("test_update_weights_from_tensor.py", 48),
TestFile("test_utils_update_weights.py", 48),
TestFile("test_vertex_endpoint.py", 31),
TestFile("test_vision_chunked_prefill.py", 175),
TestFile("test_vlm_input_format.py", 300),
TestFile("test_vision_openai_server_a.py", 584),
......@@ -167,7 +165,6 @@ suites = {
TestFile("models/lora/test_lora_tp.py", 116),
TestFile("test_data_parallelism.py", 73),
TestFile("test_dp_attention.py", 277),
TestFile("test_mla_tp.py", 170),
TestFile("test_patch_torch.py", 19),
TestFile("test_update_weights_from_distributed.py", 103),
TestFile("test_release_memory_occupation.py", 127),
......@@ -175,7 +172,6 @@ suites = {
"per-commit-2-gpu-amd": [
TestFile("models/lora/test_lora_tp.py", 116),
TestFile("test_data_parallelism.py", 73),
TestFile("test_mla_tp.py", 170),
TestFile("test_patch_torch.py", 19),
TestFile("test_update_weights_from_distributed.py", 103),
],
......
......@@ -15,7 +15,7 @@ from sglang.test.test_utils import (
TEST_MODEL_MATRIX = {
"Qwen/Qwen2.5-7B-Instruct": {
"accuracy": 0.85,
"accuracy": 0.84,
"latency": 150,
"output_throughput": 30,
},
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment