Unverified Commit 6ea1e6ac authored by XinyuanTong's avatar XinyuanTong Committed by GitHub
Browse files

Support MMMU benchmark for InternVL (#5968)

parent 3409aaab
......@@ -17,6 +17,13 @@ from transformers import AutoModel, AutoProcessor, GenerationConfig
@torch.no_grad()
def eval_mmmu(args):
eval_args = EvalArgs.from_cli_args(args)
sampling_params = get_sampling_params(eval_args)
generation_config = GenerationConfig(
max_new_tokens=sampling_params["max_new_tokens"],
do_sample=False,
)
try:
from transformers import AutoModelForImageTextToText
......@@ -27,12 +34,28 @@ def eval_mmmu(args):
)
except Exception as first_exception:
try:
model = AutoModel.from_pretrained(
args.model_path,
torch_dtype="auto",
trust_remote_code=True,
init_tts=False,
)
# check if the model is belongs to internvl
if "InternVL" in args.model_path:
from internvl_utils import load_image
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
model = AutoModel.from_pretrained(
args.model_path,
torch_dtype="auto",
trust_remote_code=True,
)
generation_config_internvl = dict(
max_new_tokens=sampling_params["max_new_tokens"], do_sample=False
)
else:
model = AutoModel.from_pretrained(
args.model_path,
torch_dtype="auto",
trust_remote_code=True,
init_tts=False,
)
except Exception as second_exception:
raise RuntimeError(
f"Failed to load model: First attempt failed with {first_exception}, "
......@@ -48,12 +71,6 @@ def eval_mmmu(args):
samples = prepare_samples(eval_args)
out_samples = dict()
sampling_params = get_sampling_params(eval_args)
generation_config = GenerationConfig(
max_new_tokens=sampling_params["max_new_tokens"],
do_sample=False,
)
answer_dict = {}
for sample in tqdm(samples):
prompt = sample["final_input_prompt"]
......@@ -61,6 +78,22 @@ def eval_mmmu(args):
prefix = prompt.split("<")[0]
suffix = prompt.split(">")[1]
assert image is not None
if "InternVL" in args.model_path:
pixel_values = load_image(sample["image_path"]).to(torch.bfloat16).cuda()
contents = ""
if prefix:
contents += prefix
contents += "<image>\n"
if suffix:
contents += suffix
response = model.chat(
tokenizer, pixel_values, contents, generation_config_internvl
)
print(f"response: {response}")
process_result(response, sample, answer_dict, out_samples)
continue
contents = []
if prefix:
contents += [{"type": "text", "text": prefix}]
......
# copy from https://huggingface.co/OpenGVLab/InternVL3-1B
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose(
[
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD),
]
)
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(
image, min_num=1, max_num=12, image_size=448, use_thumbnail=False
):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert("RGB")
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(
image, image_size=input_size, use_thumbnail=True, max_num=max_num
)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment