Unverified Commit 681fdc26 authored by Xinyuan Tong's avatar Xinyuan Tong Committed by GitHub
Browse files

Refactor vlm embedding routine to use precomputed feature (#6543)


Signed-off-by: default avatarXinyuan Tong <justinning0323@outlook.com>
parent 0d477880
......@@ -252,40 +252,36 @@ def get_embedding_chunk(
return embedding_chunk, start_index, end_index
def get_embedding_and_mask(
def _get_precomputed_embedding(
items: List[MultimodalDataItem],
) -> Optional[torch.Tensor]:
"""
If all items have precomputed_features, return their concatenation.
If some but not all have precomputed_features, raise NotImplementedError.
If none have precomputed_features, return None.
"""
precomputed_features = [item.precomputed_features for item in items]
if any(feature is not None for feature in precomputed_features):
if not all(feature is not None for feature in precomputed_features):
raise NotImplementedError(
"MM inputs where only some items are precomputed."
)
result = torch.concat(precomputed_features)
# some models embedding is 3-dim, reshape it to 2-dim (similar to get_embedding_chunk)
result = result.reshape(-1, result.shape[-1])
return result
return None
def _get_chunked_prefill_embedding(
data_embedding_func: Callable[[List[MultimodalDataItem]], torch.Tensor],
embedding_items: List[MultimodalDataItem],
placeholder_tensor: torch.Tensor,
input_ids: torch.Tensor,
items_size: List[int],
prefix_length: List[int],
extend_length: List[int],
items_offset_list: List[List[Tuple[int, int]]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Generate multimodal embeddings and create a mask for identifying their positions in the input sequence.
Args:
data_embedding_func: Function that generates embeddings for multimodal items
embedding_items: List of multimodal items to embed
placeholder_tensor: Tensor containing token IDs that serve as placeholders for multimodal content
input_ids: The input token IDs tensor
items_size: Cumulative sizes of multimodal items per request
prefix_length: Prefix lengths for each request
extend_length: Sequence lengths for each request
items_offset_list: List of offset ranges for multimodal items in each request
Returns:
A tuple containing:
- The generated embeddings tensor
- A boolean mask tensor indicating where these embeddings should be placed
Raises:
AssertionError: If the number of multimodal tokens in input_ids doesn't match
the number of tokens in the generated embeddings
"""
# 1. Get the embedding
# Calculate embedding for each request, try to get it from cache to avoid repeated calculation
) -> Optional[torch.Tensor]:
# Calculate embedding for each request, try to get it from cache to avoid repeated calculation
embedding_list = []
for i in range(len(items_size) - 1):
if items_size[i] == items_size[i + 1]:
......@@ -321,21 +317,28 @@ def get_embedding_and_mask(
embedding_cache.free(embedding_items_hash)
embedding_list.append(embedding_per_req_chunk)
if len(embedding_list) == 0:
return None, None
embedding = torch.concat(embedding_list, dim=0)
# 2. Check the embedding
num_mm_tokens_in_embedding = embedding.shape[0]
special_multimodal_mask = torch.isin(
input_ids,
placeholder_tensor,
).unsqueeze(-1)
return None
return torch.concat(embedding_list, dim=0)
def _get_multimodal_mask(
input_ids: torch.Tensor, placeholder_tensor: torch.Tensor
) -> torch.Tensor:
return torch.isin(input_ids, placeholder_tensor).unsqueeze(-1)
num_mm_tokens_in_input_ids = special_multimodal_mask.sum().item()
def _adjust_embedding_length(
embedding: torch.Tensor,
mask: torch.Tensor,
logger,
) -> torch.Tensor:
num_mm_tokens_in_embedding = embedding.shape[0]
num_mm_tokens_in_input_ids = mask.sum().item()
if num_mm_tokens_in_input_ids != num_mm_tokens_in_embedding:
logger.warning(
f"Number of tokens in multimodal embedding does not match those in the input text. "
f"Got {num_mm_tokens_in_input_ids} tokens in the text but {num_mm_tokens_in_embedding} "
"tokens from multimodal embeddings."
f"tokens from multimodal embeddings."
)
if num_mm_tokens_in_input_ids < num_mm_tokens_in_embedding:
chunked_prefill_size = global_server_args_dict["chunked_prefill_size"]
......@@ -353,7 +356,54 @@ def get_embedding_and_mask(
raise RuntimeError(
f"Insufficient multimodal embedding length: {num_mm_tokens_in_input_ids=} vs {num_mm_tokens_in_embedding=}. This is an internal error"
)
return embedding
def get_embedding_and_mask(
data_embedding_func: Callable[[List[MultimodalDataItem]], torch.Tensor],
embedding_items: List[MultimodalDataItem],
placeholder_tensor: torch.Tensor,
input_ids: torch.Tensor,
items_size: List[int],
prefix_length: List[int],
extend_length: List[int],
items_offset_list: List[List[Tuple[int, int]]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Generate multimodal embeddings and create a mask for identifying their positions in the input sequence.
Args:
data_embedding_func: Function that generates embeddings for multimodal items
embedding_items: List of multimodal items to embed
placeholder_tensor: Tensor containing token IDs that serve as placeholders for multimodal content
input_ids: The input token IDs tensor
items_size: Cumulative sizes of multimodal items per request
prefix_length: Prefix lengths for each request
extend_length: Sequence lengths for each request
items_offset_list: List of offset ranges for multimodal items in each request
Returns:
A tuple containing:
- The generated embeddings tensor
- A boolean mask tensor indicating where these embeddings should be placed
"""
# 1. Get embedding
embedding = _get_precomputed_embedding(embedding_items)
if embedding is None:
embedding = _get_chunked_prefill_embedding(
data_embedding_func,
embedding_items,
items_size,
prefix_length,
extend_length,
items_offset_list,
)
if embedding is None:
return None, None
# 2. Get mask
special_multimodal_mask = _get_multimodal_mask(input_ids, placeholder_tensor)
# 3. Adjust embedding length if needed
embedding = _adjust_embedding_length(embedding, special_multimodal_mask, logger)
return embedding, special_multimodal_mask
......
......@@ -144,12 +144,11 @@ class Qwen2_5VLImageProcessor(SGLangBaseProcessor):
if base_output.images:
if images_are_preprocessed:
image_grid_thw = torch.concat(
[
torch.as_tensor(item.image_grid_thws)
for item in base_output.images
]
)
all_image_grid_thws = [
item.image_grid_thws
for item in base_output.images
if item.image_grid_thws is not None
]
all_pixel_values = [
item.pixel_values
for item in base_output.images
......@@ -160,6 +159,9 @@ class Qwen2_5VLImageProcessor(SGLangBaseProcessor):
for item in base_output.images
if item.precomputed_features is not None
]
image_grid_thw = (
torch.concat(all_image_grid_thws) if all_image_grid_thws else None
)
pixel_values = (
torch.concat(all_pixel_values) if all_pixel_values else None
)
......
......@@ -282,13 +282,6 @@ class Gemma3ForConditionalGeneration(PreTrainedModel):
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
"""
if any(item.precomputed_features is not None for item in items):
if not all(item.precomputed_features is not None for item in items):
raise NotImplementedError(
"MM inputs where only some items are precomputed."
)
return torch.concat([item.precomputed_features for item in items])
# Process images one by one to handle flatten_batch=True constraint in vision_tower
all_pixel_values = flatten_nested_list([item.pixel_values for item in items])
vision_outputs_list = []
......
......@@ -499,12 +499,6 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module):
return pattern.pad_input_tokens(input_ids, mm_inputs)
def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
if any(item.precomputed_features is not None for item in items):
if not all(item.precomputed_features is not None for item in items):
raise NotImplementedError(
"MM inputs where only some items are precomputed."
)
return torch.concat([item.precomputed_features for item in items])
# in qwen-vl, last dim is the same
pixel_values = torch.cat([item.pixel_values for item in items], dim=0).type(
self.visual.dtype
......
......@@ -486,12 +486,6 @@ class Qwen2VLForConditionalGeneration(nn.Module):
return pattern.pad_input_tokens(input_ids, mm_inputs)
def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
if any(item.precomputed_features is not None for item in items):
if not all(item.precomputed_features is not None for item in items):
raise NotImplementedError(
"MM inputs where only some items are precomputed."
)
return torch.concat([item.precomputed_features for item in items])
# in qwen-vl, last dim is the same
pixel_values = torch.cat([item.pixel_values for item in items], dim=0).type(
self.visual.dtype
......
......@@ -81,7 +81,7 @@ suites = {
TestFile("test_update_weights_from_tensor.py", 48),
TestFile("test_vertex_endpoint.py", 31),
TestFile("test_vision_chunked_prefill.py", 175),
TestFile("test_vlm_accuracy.py", 60),
TestFile("test_vlm_input_format.py", 300),
TestFile("test_vision_openai_server_a.py", 700),
TestFile("test_vision_openai_server_b.py", 700),
TestFile("test_w8a8_quantization.py", 46),
......
......@@ -10,15 +10,8 @@ import requests
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import (
AutoModel,
AutoProcessor,
AutoTokenizer,
Gemma3ForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
)
from transformers import AutoModel, AutoProcessor, AutoTokenizer
from sglang import Engine
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.conversation import generate_chat_conv
from sglang.srt.managers.mm_utils import embed_mm_inputs, init_embedding_cache
......@@ -41,9 +34,6 @@ class VisionLLMLogitsBase(unittest.IsolatedAsyncioTestCase):
def setUpClass(cls):
cls.image_url = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cls.model_path = ""
cls.chat_template = ""
cls.processor = ""
response = requests.get(cls.image_url)
cls.main_image = Image.open(BytesIO(response.content))
......@@ -274,131 +264,3 @@ class TestMiniCPMVLogits(VisionLLMLogitsBase):
)
self.compare_outputs(sglang_output, hf_output)
class TestQwenVLUnderstandsImage(VisionLLMLogitsBase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.model_path = "Qwen/Qwen2.5-VL-3B-Instruct"
cls.chat_template = "qwen2-vl"
cls.processor = AutoProcessor.from_pretrained(
cls.model_path, trust_remote_code=True, use_fast=True
)
cls.visual = (
Qwen2_5_VLForConditionalGeneration.from_pretrained(
cls.model_path, torch_dtype=torch.bfloat16
)
.eval()
.visual.to(cls.device)
)
def setUp(self):
self.engine = Engine(
model_path=self.model_path,
chat_template=self.chat_template,
device=self.device.type,
mem_fraction_static=0.8,
)
def tearDown(self):
self.engine.shutdown()
async def test_qwen_vl_understands_image(self):
req = self.get_completion_request()
conv = generate_chat_conv(req, template_name=self.chat_template)
text = conv.get_prompt()
output = await self.engine.async_generate(
prompt=text,
image_data=[self.main_image],
sampling_params=dict(temperature=0.0),
)
self.assertIn("taxi", output["text"].lower())
async def test_qwen_vl_understands_precomputed_features(self):
req = self.get_completion_request()
processor_output = self.get_processor_output(req=req)
with torch.inference_mode():
precomputed_features = self.visual(
processor_output["pixel_values"], processor_output["image_grid_thw"]
)
output = await self.engine.async_generate(
input_ids=processor_output["input_ids"][0].detach().cpu().tolist(),
image_data=[
dict(
modality="IMAGE",
image_grid_thws=processor_output["image_grid_thw"],
precomputed_features=precomputed_features,
)
],
sampling_params=dict(temperature=0.0),
)
self.assertIn("taxi", output["text"].lower())
class TestGemmaUnderstandsImage(VisionLLMLogitsBase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.model_path = "google/gemma-3-4b-it"
cls.chat_template = "gemma-it"
cls.processor = AutoProcessor.from_pretrained(
cls.model_path, trust_remote_code=True, use_fast=True
)
model = Gemma3ForConditionalGeneration.from_pretrained(
cls.model_path, torch_dtype=torch.bfloat16
)
cls.vision_tower = model.vision_tower.eval().to(cls.device)
cls.mm_projector = model.multi_modal_projector.eval().to(cls.device)
@classmethod
def visual(cls, pixel_values):
vision_outputs = cls.vision_tower(pixel_values=pixel_values).last_hidden_state
image_features = cls.mm_projector(vision_outputs)
return image_features
def setUp(self):
self.engine = Engine(
model_path=self.model_path,
chat_template=self.chat_template,
device=self.device.type,
mem_fraction_static=0.5,
enable_multimodal=True,
)
def tearDown(self):
self.engine.shutdown()
async def test_gemma_understands_image(self):
req = self.get_completion_request()
conv = generate_chat_conv(req, template_name=self.chat_template)
text = conv.get_prompt()
output = await self.engine.async_generate(
prompt=text,
image_data=[self.main_image],
sampling_params=dict(temperature=0.0),
)
self.assertIn("taxi", output["text"].lower())
async def test_gemma_understands_precomputed_features(self):
req = self.get_completion_request()
processor_output = self.get_processor_output(req=req)
with torch.inference_mode():
precomputed_features = self.visual(processor_output["pixel_values"])
output = await self.engine.async_generate(
input_ids=processor_output["input_ids"][0].detach().cpu().tolist(),
image_data=[
dict(
modality="IMAGE",
precomputed_features=precomputed_features,
)
],
sampling_params=dict(temperature=0.0),
)
self.assertIn("taxi", output["text"].lower())
if __name__ == "__main__":
unittest.main()
import json
import unittest
from io import BytesIO
from typing import Optional
import requests
import torch
from PIL import Image
from transformers import (
AutoProcessor,
Gemma3ForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
)
from sglang import Engine
from sglang.srt.conversation import generate_chat_conv
from sglang.srt.openai_api.protocol import ChatCompletionRequest
TEST_IMAGE_URL = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
class VLMInputTestBase:
model_path = None
chat_template = None
processor = None
visual = None # Should be a callable for precomputed features
@classmethod
def setUpClass(cls):
assert cls.model_path is not None, "Set model_path in subclass"
assert cls.chat_template is not None, "Set chat_template in subclass"
cls.image_url = TEST_IMAGE_URL
cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
response = requests.get(cls.image_url)
cls.main_image = Image.open(BytesIO(response.content))
cls.processor = AutoProcessor.from_pretrained(
cls.model_path, trust_remote_code=True, use_fast=True
)
cls._init_visual()
@classmethod
def _init_visual(cls):
"""Override in subclass to set up cls.visual as a callable for precomputed features."""
raise NotImplementedError
def setUp(self):
self.engine = Engine(
model_path=self.model_path,
chat_template=self.chat_template,
device=self.device.type,
mem_fraction_static=0.8,
enable_multimodal=True,
disable_cuda_graph=True,
)
def tearDown(self):
self.engine.shutdown()
def get_completion_request(self) -> ChatCompletionRequest:
json_structure = {
"model": self.model_path,
"messages": [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": self.image_url}},
{"type": "text", "text": "What's in this picture?"},
],
}
],
}
json_str = json.dumps(json_structure)
return ChatCompletionRequest.model_validate_json(json_str)
def get_processor_output(self, req: Optional[ChatCompletionRequest] = None):
if req is None:
req = self.get_completion_request()
conv = generate_chat_conv(req, template_name=self.chat_template)
text = conv.get_prompt()
# Process inputs using processor
inputs = self.processor(
text=[text],
images=[self.main_image],
return_tensors="pt",
).to(self.device)
return inputs
async def test_understands_image(self):
req = self.get_completion_request()
conv = generate_chat_conv(req, template_name=self.chat_template)
text = conv.get_prompt()
output = await self.engine.async_generate(
prompt=text,
image_data=[self.main_image],
sampling_params=dict(temperature=0.0),
)
self.assertIn("taxi", output["text"].lower())
async def test_understands_precomputed_features(self):
req = self.get_completion_request()
processor_output = self.get_processor_output(req=req)
with torch.inference_mode():
precomputed_features = self.__class__.visual(processor_output)
output = await self.engine.async_generate(
input_ids=processor_output["input_ids"][0].detach().cpu().tolist(),
image_data=[
self._precomputed_image_data(processor_output, precomputed_features)
],
sampling_params=dict(temperature=0.0),
)
self.assertIn("taxi", output["text"].lower())
async def test_understands_pixel_values(self):
req = self.get_completion_request()
processor_output = self.get_processor_output(req=req)
output = await self.engine.async_generate(
input_ids=processor_output["input_ids"][0].detach().cpu().tolist(),
image_data=[self._pixel_values_image_data(processor_output)],
sampling_params=dict(temperature=0.0),
)
self.assertIn("taxi", output["text"].lower())
def _precomputed_image_data(self, processor_output, precomputed_features):
"""This should not be overridden."""
return dict(
modality="IMAGE",
precomputed_features=precomputed_features,
)
def _pixel_values_image_data(self, processor_output):
"""Override in subclass to pass the correct set of arguments."""
raise NotImplementedError
class TestQwenVLUnderstandsImage(VLMInputTestBase, unittest.IsolatedAsyncioTestCase):
model_path = "Qwen/Qwen2.5-VL-3B-Instruct"
chat_template = "qwen2-vl"
@classmethod
def _init_visual(cls):
cls.visual_model = (
Qwen2_5_VLForConditionalGeneration.from_pretrained(
cls.model_path, torch_dtype=torch.bfloat16
)
.eval()
.visual.to(cls.device)
)
cls.visual = lambda processor_output: cls.visual_model(
processor_output["pixel_values"], processor_output["image_grid_thw"]
)
def _pixel_values_image_data(self, processor_output):
return dict(
modality="IMAGE",
image_grid_thws=processor_output["image_grid_thw"],
pixel_values=processor_output["pixel_values"],
)
class TestGemmaUnderstandsImage(VLMInputTestBase, unittest.IsolatedAsyncioTestCase):
model_path = "google/gemma-3-4b-it"
chat_template = "gemma-it"
@classmethod
def _init_visual(cls):
model = Gemma3ForConditionalGeneration.from_pretrained(
cls.model_path, torch_dtype=torch.bfloat16
)
cls.vision_tower = model.vision_tower.eval().to(cls.device)
cls.mm_projector = model.multi_modal_projector.eval().to(cls.device)
cls.visual = lambda processor_output: cls.mm_projector(
cls.vision_tower(
pixel_values=processor_output["pixel_values"]
).last_hidden_state
)
def _pixel_values_image_data(self, processor_output):
return dict(
modality="IMAGE",
pixel_values=processor_output["pixel_values"][0],
)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment