Unverified Commit 62f15eea authored by Yineng Zhang's avatar Yineng Zhang Committed by GitHub
Browse files

docs: add conclusion (#1340)

parent 79794af5
## How to reproduce the benchmark results for SGLang v0.3.0 compared to vLLM v0.6.0 ## How to reproduce the benchmark results for SGLang v0.3.0 compared to vLLM v0.6.0
In short, with multi step enabled, in online scenarios that we benchmarked, the Median TTFT of vLLM is **3 times** that of SGLang, and the Median ITL is **10 times** that of SGLang. Lower Median TTFT and ITL are better. vLLM's multi-step optimization did not improve throughput while ensuring lower Median TTFT and ITL. Also, under maximum throughput benchmark, if vLLM does not set gpu util to 0.95 separately and uses the default configuration instead, its maximum throughput is **lower** than that of SGLang.
## Online benchmark results
### Llama 3.1 8B Instruct 1 x A100 80G
| RPS | Num prompts | Engine | Median E2E Latency | Median TTFT | Median TPOT | Median ITL |
|------|-------------|--------|--------------------|-------------|-------------|------------|
| 4 | 1200 | SGLang | 1564.17 | **31.98** | 13.17 | **11.93** |
| 4 | 1200 | vLLM | 1691.97 | **100.48** | 14.14 | **129.32** |
| 8 | 2400 | SGLang | 2175.02 | **35.68** | 17.85 | **14.41** |
| 8 | 2400 | vLLM | 2137.16 | **120.39** | 17.09 | **158.63** |
### Llama 3.1 70B Insruct 4 x H100 80G
| RPS | Num Prompts | Engine | Median E2E Latency | Median TTFT | Median TPOT | Median ITL |
|------|-------------|--------|--------------------|-------------|-------------|------------|
| 4 | 1200 | SGLang | 3005.24 | **53.94** | 25.03 | **21.67** |
| 4 | 1200 | vLLM | 2915.60 | **179.15** | 23.58 | **231.23** |
| 8 | 2400 | SGLang | 4064.98 | **58.11** | 33.07 | **24.45** |
| 8 | 2400 | vLLM | 3752.38 | **207.12** | 29.15 | **275.32** |
## Offline benchmark results
### Llama 3.1 8B Instruct 1 x A100 80G
| RPS | Num Prompts | Engine | Request throughput | Output token throughput |
|------|-------------|--------|--------------------|-------------------------|
| inf | 5000 | SGLang | 22.03 | **4281.51** |
| inf | 5000 | vLLM | 21.27 | **4132.37** |
### Llama 3.1 70B Insruct 4 x H100 80G
| RPS | Num Prompts | Engine | Request throughput | Output token throughput |
|------|-------------|--------|--------------------|-------------------------|
| inf | 5000 | SGLang | 19.84 | **3856.01** |
| inf | 5000 | vLLM | 19.04 | **3700.64** |
## Installation ## Installation
```bash ```bash
...@@ -49,39 +87,3 @@ python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3.1-7 ...@@ -49,39 +87,3 @@ python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3.1-7
python3 -m sglang.bench_serving --backend sglang --dataset-name sharegpt --num-prompts 5000 python3 -m sglang.bench_serving --backend sglang --dataset-name sharegpt --num-prompts 5000
python3 -m sglang.bench_serving --backend vllm --dataset-name sharegpt --num-prompts 5000 python3 -m sglang.bench_serving --backend vllm --dataset-name sharegpt --num-prompts 5000
``` ```
## Online benchmark results
### Llama 3.1 8B Instruct 1 x A100 80G
| RPS | Num prompts | Engine | Median E2E Latency | Median TTFT | Median TPOT | Median ITL |
|------|-------------|--------|--------------------|-------------|-------------|------------|
| 4 | 1200 | SGLang | 1564.17 | **31.98** | 13.17 | **11.93** |
| 4 | 1200 | vLLM | 1691.97 | **100.48** | 14.14 | **129.32** |
| 8 | 2400 | SGLang | 2175.02 | **35.68** | 17.85 | **14.41** |
| 8 | 2400 | vLLM | 2137.16 | **120.39** | 17.09 | **158.63** |
### Llama 3.1 70B Insruct 4 x H100 80G
| RPS | Num Prompts | Engine | Median E2E Latency | Median TTFT | Median TPOT | Median ITL |
|------|-------------|--------|--------------------|-------------|-------------|------------|
| 4 | 1200 | SGLang | 3005.24 | **53.94** | 25.03 | **21.67** |
| 4 | 1200 | vLLM | 2915.60 | **179.15** | 23.58 | **231.23** |
| 8 | 2400 | SGLang | 4064.98 | **58.11** | 33.07 | **24.45** |
| 8 | 2400 | vLLM | 3752.38 | **207.12** | 29.15 | **275.32** |
## Offline benchmark results
### Llama 3.1 8B Instruct 1 x A100 80G
| RPS | Num Prompts | Engine | Request throughput | Output token throughput |
|------|-------------|--------|--------------------|-------------------------|
| inf | 5000 | SGLang | 22.03 | **4281.51** |
| inf | 5000 | vLLM | 21.27 | **4132.37** |
### Llama 3.1 70B Insruct 4 x H100 80G
| RPS | Num Prompts | Engine | Request throughput | Output token throughput |
|------|-------------|--------|--------------------|-------------------------|
| inf | 5000 | SGLang | 19.84 | **3856.01** |
| inf | 5000 | vLLM | 19.04 | **3700.64** |
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment