Unverified Commit 61dec545 authored by Ke Bao's avatar Ke Bao Committed by GitHub
Browse files

Remove unused vars in the triton backend (#2401)

parent 96db0f66
...@@ -35,11 +35,6 @@ class TritonAttnBackend(AttentionBackend): ...@@ -35,11 +35,6 @@ class TritonAttnBackend(AttentionBackend):
model_runner.model_config.num_attention_heads // model_runner.tp_size model_runner.model_config.num_attention_heads // model_runner.tp_size
) )
if global_server_args_dict.get("triton_attention_reduce_in_fp32", False):
self.reduce_dtype = torch.float32
else:
self.reduce_dtype = torch.float16
self.num_kv_splits = model_runner.server_args.triton_attention_num_kv_splits self.num_kv_splits = model_runner.server_args.triton_attention_num_kv_splits
self.v_head_dim = model_runner.token_to_kv_pool.get_value_buffer(0).shape[-1] self.v_head_dim = model_runner.token_to_kv_pool.get_value_buffer(0).shape[-1]
...@@ -53,9 +48,6 @@ class TritonAttnBackend(AttentionBackend): ...@@ -53,9 +48,6 @@ class TritonAttnBackend(AttentionBackend):
"""Init auxiliary variables for triton attention backend.""" """Init auxiliary variables for triton attention backend."""
if forward_batch.forward_mode.is_decode(): if forward_batch.forward_mode.is_decode():
start_loc = torch.zeros_like(forward_batch.seq_lens, dtype=torch.int32)
start_loc[1:] = torch.cumsum(forward_batch.seq_lens[:-1], dim=0)
attn_logits = torch.empty( attn_logits = torch.empty(
( (
forward_batch.batch_size, forward_batch.batch_size,
...@@ -67,13 +59,12 @@ class TritonAttnBackend(AttentionBackend): ...@@ -67,13 +59,12 @@ class TritonAttnBackend(AttentionBackend):
device=self.device, device=self.device,
) )
max_seq_len = torch.max(forward_batch.seq_lens).item()
max_extend_len = None max_extend_len = None
else: else:
start_loc = attn_logits = max_seq_len = None attn_logits = None
max_extend_len = torch.max(forward_batch.extend_seq_lens).item() max_extend_len = torch.max(forward_batch.extend_seq_lens).item()
self.forward_metadata = start_loc, attn_logits, max_seq_len, max_extend_len self.forward_metadata = attn_logits, max_extend_len
def init_cuda_graph_state(self, max_bs: int): def init_cuda_graph_state(self, max_bs: int):
self.cuda_graph_max_total_num_tokens = max_bs * self.cuda_graph_max_seq_len self.cuda_graph_max_total_num_tokens = max_bs * self.cuda_graph_max_seq_len
...@@ -96,9 +87,7 @@ class TritonAttnBackend(AttentionBackend): ...@@ -96,9 +87,7 @@ class TritonAttnBackend(AttentionBackend):
): ):
# NOTE: encoder_lens expected to be zeros or None # NOTE: encoder_lens expected to be zeros or None
self.forward_metadata = ( self.forward_metadata = (
self.cuda_graph_start_loc,
self.cuda_graph_attn_logits, self.cuda_graph_attn_logits,
self.cuda_graph_max_seq_len,
None, None,
) )
...@@ -137,7 +126,7 @@ class TritonAttnBackend(AttentionBackend): ...@@ -137,7 +126,7 @@ class TritonAttnBackend(AttentionBackend):
layer, forward_batch.out_cache_loc, k, v layer, forward_batch.out_cache_loc, k, v
) )
start_loc, attn_logits, max_seq_len, max_extend_len = self.forward_metadata _, max_extend_len = self.forward_metadata
self.extend_attention_fwd( self.extend_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim), q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
k.contiguous(), k.contiguous(),
...@@ -175,7 +164,7 @@ class TritonAttnBackend(AttentionBackend): ...@@ -175,7 +164,7 @@ class TritonAttnBackend(AttentionBackend):
else: else:
o = torch.empty_like(q) o = torch.empty_like(q)
start_loc, attn_logits, max_seq_len, max_extend_len = self.forward_metadata attn_logits, _ = self.forward_metadata
if save_kv_cache: if save_kv_cache:
forward_batch.token_to_kv_pool.set_kv_buffer( forward_batch.token_to_kv_pool.set_kv_buffer(
...@@ -189,10 +178,8 @@ class TritonAttnBackend(AttentionBackend): ...@@ -189,10 +178,8 @@ class TritonAttnBackend(AttentionBackend):
o.view(-1, layer.tp_q_head_num, layer.v_head_dim), o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
forward_batch.req_to_token_pool.req_to_token, forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices, forward_batch.req_pool_indices,
start_loc,
forward_batch.seq_lens, forward_batch.seq_lens,
attn_logits, attn_logits,
max_seq_len,
self.num_kv_splits, self.num_kv_splits,
layer.scaling, layer.scaling,
layer.logit_cap, layer.logit_cap,
......
...@@ -19,6 +19,9 @@ It supports page size = 1. ...@@ -19,6 +19,9 @@ It supports page size = 1.
# Adapted from # Adapted from
# https://github.com/ModelTC/lightllm/blob/96353e868a840db4d103138caf15ed9dbea8c186/lightllm/models/deepseek2/triton_kernel/gqa_flash_decoding_stage1.py # https://github.com/ModelTC/lightllm/blob/96353e868a840db4d103138caf15ed9dbea8c186/lightllm/models/deepseek2/triton_kernel/gqa_flash_decoding_stage1.py
# https://github.com/ModelTC/lightllm/blob/96353e868a840db4d103138caf15ed9dbea8c186/lightllm/models/deepseek2/triton_kernel/gqa_flash_decoding_stage2.py # https://github.com/ModelTC/lightllm/blob/96353e868a840db4d103138caf15ed9dbea8c186/lightllm/models/deepseek2/triton_kernel/gqa_flash_decoding_stage2.py
import logging
import triton import triton
import triton.language as tl import triton.language as tl
...@@ -26,6 +29,13 @@ from sglang.srt.utils import is_hip ...@@ -26,6 +29,13 @@ from sglang.srt.utils import is_hip
is_hip_ = is_hip() is_hip_ = is_hip()
logger = logging.getLogger(__name__)
# TODO: Remove this when triton>=3.2.0. This issue will not affect performance and accuracy.
logger.warn(
"The following error message 'operation scheduled before its operands' can be ignored."
)
@triton.jit @triton.jit
def tanh(x): def tanh(x):
...@@ -166,7 +176,6 @@ def _decode_att_m_fwd( ...@@ -166,7 +176,6 @@ def _decode_att_m_fwd(
Req_to_tokens, Req_to_tokens,
B_req_idx, B_req_idx,
B_Seqlen, B_Seqlen,
max_len_in_batch,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
logit_cap, logit_cap,
...@@ -389,7 +398,6 @@ def _decode_grouped_att_m_fwd( ...@@ -389,7 +398,6 @@ def _decode_grouped_att_m_fwd(
Req_to_tokens, Req_to_tokens,
B_req_idx, B_req_idx,
B_Seqlen, B_Seqlen,
max_len_in_batch,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
logit_cap, logit_cap,
...@@ -556,7 +564,6 @@ def decode_attention_fwd_normal( ...@@ -556,7 +564,6 @@ def decode_attention_fwd_normal(
b_req_idx, b_req_idx,
b_seq_len, b_seq_len,
attn_logits, attn_logits,
max_len_in_batch,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
logit_cap=0.0, logit_cap=0.0,
...@@ -569,7 +576,6 @@ def decode_attention_fwd_normal( ...@@ -569,7 +576,6 @@ def decode_attention_fwd_normal(
req_to_token, req_to_token,
b_req_idx, b_req_idx,
b_seq_len, b_seq_len,
max_len_in_batch,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
logit_cap, logit_cap,
...@@ -586,7 +592,6 @@ def decode_attention_fwd_grouped( ...@@ -586,7 +592,6 @@ def decode_attention_fwd_grouped(
b_req_idx, b_req_idx,
b_seq_len, b_seq_len,
attn_logits, attn_logits,
max_len_in_batch,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
logit_cap=0.0, logit_cap=0.0,
...@@ -599,7 +604,6 @@ def decode_attention_fwd_grouped( ...@@ -599,7 +604,6 @@ def decode_attention_fwd_grouped(
req_to_token, req_to_token,
b_req_idx, b_req_idx,
b_seq_len, b_seq_len,
max_len_in_batch,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
logit_cap, logit_cap,
...@@ -614,10 +618,8 @@ def decode_attention_fwd( ...@@ -614,10 +618,8 @@ def decode_attention_fwd(
o, o,
req_to_token, req_to_token,
b_req_idx, b_req_idx,
b_start_loc,
b_seq_len, b_seq_len,
attn_logits, attn_logits,
max_len_in_batch,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
logit_cap=0.0, logit_cap=0.0,
...@@ -636,7 +638,6 @@ def decode_attention_fwd( ...@@ -636,7 +638,6 @@ def decode_attention_fwd(
b_req_idx, b_req_idx,
b_seq_len, b_seq_len,
attn_logits, attn_logits,
max_len_in_batch,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
logit_cap, logit_cap,
...@@ -652,7 +653,6 @@ def decode_attention_fwd( ...@@ -652,7 +653,6 @@ def decode_attention_fwd(
b_req_idx, b_req_idx,
b_seq_len, b_seq_len,
attn_logits, attn_logits,
max_len_in_batch,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
logit_cap, logit_cap,
......
...@@ -196,7 +196,6 @@ class TestTritonAttention(unittest.TestCase): ...@@ -196,7 +196,6 @@ class TestTritonAttention(unittest.TestCase):
req_to_token = torch.arange(total_tokens, device="cuda").reshape(B, seq_len) req_to_token = torch.arange(total_tokens, device="cuda").reshape(B, seq_len)
b_req_idx = torch.arange(B, device="cuda") b_req_idx = torch.arange(B, device="cuda")
b_start_loc = torch.arange(0, total_tokens, seq_len, device="cuda")
b_seq_len = torch.full((B,), seq_len, device="cuda") b_seq_len = torch.full((B,), seq_len, device="cuda")
attn_logits = torch.empty( attn_logits = torch.empty(
...@@ -212,10 +211,8 @@ class TestTritonAttention(unittest.TestCase): ...@@ -212,10 +211,8 @@ class TestTritonAttention(unittest.TestCase):
o, o,
req_to_token, req_to_token,
b_req_idx, b_req_idx,
b_start_loc,
b_seq_len, b_seq_len,
attn_logits, attn_logits,
seq_len,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
) )
...@@ -255,7 +252,6 @@ class TestTritonAttention(unittest.TestCase): ...@@ -255,7 +252,6 @@ class TestTritonAttention(unittest.TestCase):
req_to_token = torch.arange(total_tokens, device="cuda").reshape(B, seq_len) req_to_token = torch.arange(total_tokens, device="cuda").reshape(B, seq_len)
b_req_idx = torch.arange(B, device="cuda") b_req_idx = torch.arange(B, device="cuda")
b_start_loc = torch.arange(0, total_tokens, seq_len, device="cuda")
b_seq_len = torch.full((B,), seq_len, device="cuda") b_seq_len = torch.full((B,), seq_len, device="cuda")
attn_logits = torch.empty( attn_logits = torch.empty(
...@@ -273,7 +269,6 @@ class TestTritonAttention(unittest.TestCase): ...@@ -273,7 +269,6 @@ class TestTritonAttention(unittest.TestCase):
b_req_idx, b_req_idx,
b_seq_len, b_seq_len,
attn_logits, attn_logits,
seq_len,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
) )
...@@ -293,7 +288,6 @@ class TestTritonAttention(unittest.TestCase): ...@@ -293,7 +288,6 @@ class TestTritonAttention(unittest.TestCase):
b_req_idx, b_req_idx,
b_seq_len, b_seq_len,
attn_logits1, attn_logits1,
seq_len,
num_kv_splits, num_kv_splits,
sm_scale, sm_scale,
) )
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment