Unverified Commit 619bb6dd authored by Liangsheng Yin's avatar Liangsheng Yin Committed by GitHub
Browse files

Dispatch flashinfer wrappers (#1550)

parent b88ea90d
......@@ -53,39 +53,44 @@ class FlashInferAttnBackend(AttentionBackend):
device="cuda",
)
if model_runner.sliding_window_size is None:
self.prefill_wrapper_ragged = BatchPrefillWithRaggedKVCacheWrapper(
self.workspace_buffer, "NHD"
)
self.prefill_wrapper_paged = BatchPrefillWithPagedKVCacheWrapper(
self.workspace_buffer, "NHD"
)
self.decode_wrapper = BatchDecodeWithPagedKVCacheWrapper(
self.workspace_buffer,
"NHD",
use_tensor_cores=self.decode_use_tensor_cores,
)
if model_runner.sliding_window_size is not None:
self.num_wrappers = 2
else:
# Two wrappers: one for sliding window attention and one for full attention.
# Using two wrappers is unnecessary in the current PR, but are prepared for future PRs
self.prefill_wrapper_ragged = None
self.prefill_wrapper_paged = []
self.decode_wrapper = []
for _ in range(2):
self.prefill_wrapper_paged.append(
BatchPrefillWithPagedKVCacheWrapper(self.workspace_buffer, "NHD")
)
self.decode_wrapper.append(
BatchDecodeWithPagedKVCacheWrapper(
self.workspace_buffer,
"NHD",
use_tensor_cores=self.decode_use_tensor_cores,
)
self.num_wrappers = 1
# NOTE: we do not use ragged attention when there are multiple wrappers
self.prefill_wrapper_ragged = (
BatchPrefillWithRaggedKVCacheWrapper(self.workspace_buffer, "NHD")
if self.num_wrappers == 1
else None
)
# Two wrappers: one for sliding window attention and one for full attention.
# Using two wrappers is unnecessary in the current PR, but are prepared for future PRs
self.prefill_wrappers_paged = []
self.decode_wrappers = []
for _ in range(self.num_wrappers):
self.prefill_wrappers_paged.append(
BatchPrefillWithPagedKVCacheWrapper(self.workspace_buffer, "NHD")
)
self.decode_wrappers.append(
BatchDecodeWithPagedKVCacheWrapper(
self.workspace_buffer,
"NHD",
use_tensor_cores=self.decode_use_tensor_cores,
)
)
self.forward_metadata = None
self.cuda_graph_metadata = {}
def _get_wrapper_idx(self, layer: nn.Module):
if self.num_wrappers == 1:
return 0
# TODO: make sure the idx is related to sliding window size
return layer.sliding_window_size == -1
def init_forward_metadata(self, forward_batch: ForwardBatch):
if forward_batch.forward_mode.is_decode():
prefix_lens = None
......@@ -99,7 +104,7 @@ class FlashInferAttnBackend(AttentionBackend):
use_ragged = False
if (
torch.sum(forward_batch.seq_lens).item() >= 4096
and self.model_runner.sliding_window_size is None
and self.num_wrappers == 1
):
use_ragged = True
......@@ -119,7 +124,7 @@ class FlashInferAttnBackend(AttentionBackend):
use_ragged,
extend_no_prefix,
total_num_tokens,
self.decode_wrapper,
self.decode_wrappers,
)
def init_cuda_graph_state(self, max_bs: int):
......@@ -135,45 +140,30 @@ class FlashInferAttnBackend(AttentionBackend):
(max_bs,), dtype=torch.int32, device="cuda"
)
if self.model_runner.sliding_window_size is not None:
self.cuda_graph_kv_indptr = [
self.cuda_graph_kv_indptr,
self.cuda_graph_kv_indptr.clone(),
]
self.cuda_graph_kv_indices = [
self.cuda_graph_kv_indices,
self.cuda_graph_kv_indices.clone(),
]
# NOTE: the buffers are always in the form of list
self.cuda_graph_kv_indptr = [self.cuda_graph_kv_indptr] + [
self.cuda_graph_kv_indptr.clone() for _ in range(self.num_wrappers - 1)
]
self.cuda_graph_kv_indices = [self.cuda_graph_kv_indices] + [
self.cuda_graph_kv_indices.clone() for _ in range(self.num_wrappers - 1)
]
def init_forward_metadata_capture_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
):
if self.model_runner.sliding_window_size is None:
decode_wrapper = BatchDecodeWithPagedKVCacheWrapper(
self.workspace_buffer,
"NHD",
use_cuda_graph=True,
use_tensor_cores=self.decode_use_tensor_cores,
paged_kv_indptr_buffer=self.cuda_graph_kv_indptr[: bs + 1],
paged_kv_indices_buffer=self.cuda_graph_kv_indices,
paged_kv_last_page_len_buffer=self.cuda_graph_kv_last_page_len[:bs],
)
else:
decode_wrapper = []
for i in range(2):
decode_wrapper.append(
BatchDecodeWithPagedKVCacheWrapper(
self.workspace_buffer,
"NHD",
use_cuda_graph=True,
use_tensor_cores=self.decode_use_tensor_cores,
paged_kv_indptr_buffer=self.cuda_graph_kv_indptr[i][: bs + 1],
paged_kv_indices_buffer=self.cuda_graph_kv_indices[i],
paged_kv_last_page_len_buffer=self.cuda_graph_kv_last_page_len[
:bs
],
)
decode_wrappers = []
for i in range(self.num_wrappers):
decode_wrappers.append(
BatchDecodeWithPagedKVCacheWrapper(
self.workspace_buffer,
"NHD",
use_cuda_graph=True,
use_tensor_cores=self.decode_use_tensor_cores,
paged_kv_indptr_buffer=self.cuda_graph_kv_indptr[i][: bs + 1],
paged_kv_indices_buffer=self.cuda_graph_kv_indices[i],
paged_kv_last_page_len_buffer=self.cuda_graph_kv_last_page_len[:bs],
)
)
update_flashinfer_indices(
ForwardMode.DECODE,
......@@ -181,12 +171,12 @@ class FlashInferAttnBackend(AttentionBackend):
req_pool_indices,
seq_lens,
None,
decode_wrapper,
decode_wrappers,
)
self.cuda_graph_metadata[bs] = decode_wrapper
self.cuda_graph_metadata[bs] = decode_wrappers
self.forward_metadata = (False, False, None, decode_wrapper)
self.forward_metadata = (False, False, None, decode_wrappers)
def init_forward_metadata_replay_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
......@@ -204,17 +194,11 @@ class FlashInferAttnBackend(AttentionBackend):
return 0
def forward_extend(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
if not isinstance(self.prefill_wrapper_paged, list):
prefill_wrapper_paged = self.prefill_wrapper_paged
else:
if layer.sliding_window_size != -1:
prefill_wrapper_paged = self.prefill_wrapper_paged[0]
else:
prefill_wrapper_paged = self.prefill_wrapper_paged[1]
prefill_wrapper_paged = self.prefill_wrappers_paged[
self._get_wrapper_idx(layer)
]
use_ragged, extend_no_prefix, total_num_tokens, decode_wrapper = (
self.forward_metadata
)
use_ragged, extend_no_prefix, _, _ = self.forward_metadata
if not use_ragged:
if k is not None:
......@@ -260,15 +244,7 @@ class FlashInferAttnBackend(AttentionBackend):
return o.view(-1, layer.tp_q_head_num * layer.head_dim)
def forward_decode(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
use_ragged, extend_no_prefix, total_num_tokens, decode_wrapper = (
self.forward_metadata
)
if isinstance(decode_wrapper, list):
if layer.sliding_window_size != -1:
decode_wrapper = decode_wrapper[0]
else:
decode_wrapper = decode_wrapper[1]
decode_wrapper = self.forward_metadata[-1][self._get_wrapper_idx(layer)]
if k is not None:
assert v is not None
......
......@@ -47,7 +47,7 @@ class FlashinferUpdater:
req_pool_indices,
seq_lens,
prefix_lens,
decode_wrapper=None,
decode_wrappers=None,
use_ragged=False,
):
self.forward_mode = forward_mode
......@@ -66,14 +66,14 @@ class FlashinferUpdater:
self.head_dim = model_runner.model_config.head_dim
self.batch_size = len(req_pool_indices)
self.decode_wrapper = (
decode_wrapper or self.model_runner.attn_backend.decode_wrapper
self.decode_wrappers = (
decode_wrappers or self.model_runner.attn_backend.decode_wrappers
)
self.prefill_wrapper_ragged = (
self.model_runner.attn_backend.prefill_wrapper_ragged
)
self.prefill_wrapper_paged = (
self.model_runner.attn_backend.prefill_wrapper_paged
self.prefill_wrappers_paged = (
self.model_runner.attn_backend.prefill_wrappers_paged
)
self.kv_last_page_len = torch.ones(
......@@ -142,6 +142,7 @@ class FlashinferUpdater:
)
def _update_decode_indices(self, decode_wrapper):
assert not isinstance(decode_wrapper, list)
decode_wrapper.end_forward()
decode_wrapper.begin_forward(
self.kv_indptr,
......@@ -156,6 +157,9 @@ class FlashinferUpdater:
)
def _update_extend_indices(self, ragged_wrapper, paged_wrapper):
assert not isinstance(paged_wrapper, list)
assert not isinstance(ragged_wrapper, list)
# extend part
qo_indptr = torch.zeros(
(self.batch_size + 1,), dtype=torch.int32, device="cuda"
......@@ -189,11 +193,11 @@ class FlashinferUpdater:
self._init_indices_no_sliding_window()
if self.forward_mode.is_decode():
self._update_decode_indices(self.decode_wrapper)
self._update_decode_indices(self.decode_wrappers[0])
else:
self._update_extend_indices(
self.prefill_wrapper_ragged,
self.prefill_wrapper_paged,
self.prefill_wrappers_paged[0],
)
def update_indices_sliding_window(self):
......@@ -202,11 +206,11 @@ class FlashinferUpdater:
for wrapper_id in range(2):
self._init_indices_sliding_window(wrapper_id)
if self.forward_mode.is_decode():
self._update_decode_indices(self.decode_wrapper[wrapper_id])
self._update_decode_indices(self.decode_wrappers[wrapper_id])
else:
self._update_extend_indices(
None,
self.prefill_wrapper_paged[wrapper_id],
self.prefill_wrappers_paged[wrapper_id],
)
......@@ -216,7 +220,7 @@ def update_flashinfer_indices(
req_pool_indices,
seq_lens,
prefix_lens,
decode_wrapper=None,
decode_wrappers=None,
use_ragged=False,
):
updater = FlashinferUpdater(
......@@ -225,7 +229,7 @@ def update_flashinfer_indices(
req_pool_indices,
seq_lens,
prefix_lens,
decode_wrapper,
decode_wrappers,
use_ragged,
)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment