Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
5ea5d221
Unverified
Commit
5ea5d221
authored
Jun 22, 2025
by
Liangsheng Yin
Committed by
GitHub
Jun 22, 2025
Browse files
Fix CPU offloading for MLA memory pool (#7409)
parent
fdfd5224
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
44 additions
and
8 deletions
+44
-8
python/sglang/srt/mem_cache/memory_pool.py
python/sglang/srt/mem_cache/memory_pool.py
+44
-8
No files found.
python/sglang/srt/mem_cache/memory_pool.py
View file @
5ea5d221
...
...
@@ -123,6 +123,9 @@ class KVCache(abc.ABC):
enable
=
enable_memory_saver
)
# used for chunked cpu-offloading
self
.
cpu_offloading_chunk_size
=
8192
@
abc
.
abstractmethod
def
get_key_buffer
(
self
,
layer_id
:
int
)
->
torch
.
Tensor
:
raise
NotImplementedError
()
...
...
@@ -157,6 +160,12 @@ class KVCache(abc.ABC):
def
register_layer_transfer_counter
(
self
,
layer_transfer_counter
):
self
.
layer_transfer_counter
=
layer_transfer_counter
def
get_cpu_copy
(
self
,
indices
):
raise
NotImplementedError
()
def
load_cpu_copy
(
self
,
kv_cache_cpu
,
indices
):
raise
NotImplementedError
()
class
TokenToKVPoolAllocator
:
"""An allocator managing the indices to kv cache data."""
...
...
@@ -280,8 +289,6 @@ class MHATokenToKVPool(KVCache):
self
.
_create_buffers
()
# used for chunked cpu-offloading
self
.
chunk_size
=
8192
self
.
layer_transfer_counter
=
None
self
.
device_module
=
torch
.
get_device_module
(
self
.
device
)
self
.
alt_stream
=
self
.
device_module
.
Stream
()
if
_is_cuda
else
None
...
...
@@ -378,10 +385,11 @@ class MHATokenToKVPool(KVCache):
def
get_cpu_copy
(
self
,
indices
):
torch
.
cuda
.
synchronize
()
kv_cache_cpu
=
[]
chunk_size
=
self
.
cpu_offloading_chunk_size
for
layer_id
in
range
(
self
.
layer_num
):
kv_cache_cpu
.
append
([])
for
i
in
range
(
0
,
len
(
indices
),
self
.
chunk_size
):
chunk_indices
=
indices
[
i
:
i
+
self
.
chunk_size
]
for
i
in
range
(
0
,
len
(
indices
),
chunk_size
):
chunk_indices
=
indices
[
i
:
i
+
chunk_size
]
k_cpu
=
self
.
k_buffer
[
layer_id
][
chunk_indices
].
to
(
"cpu"
,
non_blocking
=
True
)
...
...
@@ -394,12 +402,13 @@ class MHATokenToKVPool(KVCache):
def
load_cpu_copy
(
self
,
kv_cache_cpu
,
indices
):
torch
.
cuda
.
synchronize
()
chunk_size
=
self
.
cpu_offloading_chunk_size
for
layer_id
in
range
(
self
.
layer_num
):
for
i
in
range
(
0
,
len
(
indices
),
self
.
chunk_size
):
chunk_indices
=
indices
[
i
:
i
+
self
.
chunk_size
]
for
i
in
range
(
0
,
len
(
indices
),
chunk_size
):
chunk_indices
=
indices
[
i
:
i
+
chunk_size
]
k_cpu
,
v_cpu
=
(
kv_cache_cpu
[
layer_id
][
i
//
self
.
chunk_size
][
0
],
kv_cache_cpu
[
layer_id
][
i
//
self
.
chunk_size
][
1
],
kv_cache_cpu
[
layer_id
][
i
//
chunk_size
][
0
],
kv_cache_cpu
[
layer_id
][
i
//
chunk_size
][
1
],
)
assert
k_cpu
.
shape
[
0
]
==
v_cpu
.
shape
[
0
]
==
len
(
chunk_indices
)
k_chunk
=
k_cpu
.
to
(
self
.
k_buffer
[
0
].
device
,
non_blocking
=
True
)
...
...
@@ -724,6 +733,33 @@ class MLATokenToKVPool(KVCache):
flat_data
=
flat_data
.
to
(
device
=
self
.
device
,
non_blocking
=
False
)
self
.
kv_buffer
[
layer_id
-
self
.
start_layer
][
indices
]
=
flat_data
def
get_cpu_copy
(
self
,
indices
):
torch
.
cuda
.
synchronize
()
kv_cache_cpu
=
[]
chunk_size
=
self
.
cpu_offloading_chunk_size
for
layer_id
in
range
(
self
.
layer_num
):
kv_cache_cpu
.
append
([])
for
i
in
range
(
0
,
len
(
indices
),
chunk_size
):
chunk_indices
=
indices
[
i
:
i
+
chunk_size
]
kv_cpu
=
self
.
kv_buffer
[
layer_id
][
chunk_indices
].
to
(
"cpu"
,
non_blocking
=
True
)
kv_cache_cpu
[
-
1
].
append
(
kv_cpu
)
torch
.
cuda
.
synchronize
()
return
kv_cache_cpu
def
load_cpu_copy
(
self
,
kv_cache_cpu
,
indices
):
torch
.
cuda
.
synchronize
()
chunk_size
=
self
.
cpu_offloading_chunk_size
for
layer_id
in
range
(
self
.
layer_num
):
for
i
in
range
(
0
,
len
(
indices
),
chunk_size
):
chunk_indices
=
indices
[
i
:
i
+
chunk_size
]
kv_cpu
=
kv_cache_cpu
[
layer_id
][
i
//
chunk_size
]
assert
kv_cpu
.
shape
[
0
]
==
len
(
chunk_indices
)
kv_chunk
=
kv_cpu
.
to
(
self
.
kv_buffer
[
0
].
device
,
non_blocking
=
True
)
self
.
kv_buffer
[
layer_id
][
chunk_indices
]
=
kv_chunk
torch
.
cuda
.
synchronize
()
class
DoubleSparseTokenToKVPool
(
KVCache
):
def
__init__
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment