Unverified Commit 5cb552b1 authored by Mick's avatar Mick Committed by GitHub
Browse files

refactor: multimodal data (#4754)

parent c7457191
......@@ -72,17 +72,38 @@ def eval_mmmu(args):
if suffix:
contents += [{"type": "text", "text": suffix}]
messages = [{"role": "user", "content": contents}]
model_inputs = processor.apply_chat_template(
messages,
tokenize=True,
return_dict=True,
add_generation_prompt=True,
return_tensors="pt",
).to(model.device)
input_len = model_inputs["input_ids"].shape[-1]
generation = model.generate(**model_inputs, generation_config=generation_config)
generation = generation[0][input_len:]
response = processor.decode(generation, skip_special_tokens=True)
try:
model_inputs = processor.tokenizer.apply_chat_template(
messages,
tokenize=True,
return_dict=True,
add_generation_prompt=True,
return_tensors="pt",
).to(model.device)
input_len = model_inputs["input_ids"].shape[-1]
generation = model.generate(
**model_inputs, generation_config=generation_config
)
generation = generation[0][input_len:]
response = processor.decode(generation, skip_special_tokens=True)
except:
contents = []
if prefix:
contents += [prefix]
image = PIL.Image.open(sample["image_path"])
contents += [image]
if suffix:
contents += [suffix]
messages = [{"role": "user", "content": contents}]
response = model.chat(
msgs=messages,
tokenizer=processor.tokenizer,
sampling=False,
max_new_tokens=sampling_params["max_new_tokens"],
use_tts_template=False,
generate_audio=False,
temperature=0.0,
)
print(f"response: {response}")
process_result(response, sample, answer_dict, out_samples)
......
......@@ -442,6 +442,8 @@ def calculate_ins_level_acc(results: Dict):
def process_result(response, sample, answer_dict, out_samples):
if response is None:
return
if sample["question_type"] == "multiple-choice":
pred_ans = parse_multi_choice_response(
response, sample["all_choices"], sample["index2ans"]
......
"""
Multimodality utils
Multi-modality utils
"""
from abc import abstractmethod
......@@ -9,11 +9,13 @@ import torch
from torch import nn
from sglang.srt.managers.schedule_batch import (
MultimodalDataItem,
MultimodalInputs,
global_server_args_dict,
logger,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.utils import print_warning_once
from sglang.utils import logger
......@@ -26,7 +28,7 @@ class MultiModalityDataPaddingPattern:
@abstractmethod
def pad_input_tokens(
self, input_ids: List[int], image_inputs: MultimodalInputs
self, input_ids: List[int], mm_inputs: MultimodalInputs
) -> List[int]:
"""
Pad the input ids sequence containing data tokens, and replace them with pad_values
......@@ -49,13 +51,13 @@ class MultiModalityDataPaddingPatternTokenPairs(MultiModalityDataPaddingPattern)
"""
This function will replace the data-tokens inbetween with pad_values accordingly
"""
pad_values = mm_inputs.pad_values
pad_values = [item.pad_value for item in mm_inputs.mm_items]
data_token_pairs = self.data_token_id_pairs
mm_inputs.image_offsets = []
mm_inputs.data_offsets = []
if data_token_pairs is None:
data_token_pairs = [mm_inputs.im_start_id, mm_inputs.im_end_id]
if data_token_pairs is None:
logger.warning(
print_warning_once(
"No data_token_pairs provided, RadixAttention might be influenced."
)
return input_ids
......@@ -77,10 +79,10 @@ class MultiModalityDataPaddingPatternTokenPairs(MultiModalityDataPaddingPattern)
if input_ids[start_idx] in start_token_ids:
data_idx += 1
mm_inputs.image_offsets += [start_idx]
mm_inputs.data_offsets += [start_idx]
if data_idx >= len(mm_inputs.pad_values):
data_idx = len(mm_inputs.pad_values) - 1
if data_idx >= len(pad_values):
data_idx = len(pad_values) - 1
num_tokens = end_idx - start_idx - 1
pad_value = pad_values[data_idx]
......@@ -94,68 +96,19 @@ class MultiModalityDataPaddingPatternTokenPairs(MultiModalityDataPaddingPattern)
return padded_ids
class MultModalityDataPaddingPatternSingleToken(MultiModalityDataPaddingPattern):
"""In this pattern, data is represented with a special token_id ( image_inputs.im_token_id ),
which needs first to be expanded to multiple tokens, then replaced with their padding values
This strategy should be used when a single data token represents content that should
be expanded to multiple tokens during processing.
"""
def __init__(
self, num_data_token_calc_func: Callable[[Tuple[int, int, int]], int]
) -> None:
self.num_data_token_calc_func = num_data_token_calc_func
def pad_input_tokens(
self, input_ids: List[int], mm_inputs: MultimodalInputs
) -> List[int]:
"""
This function will follow the procedure of:
1. the data token will be expanded, of which the final number will be calculated by `num_data_token_calc_func`
2. the padded data tokens will be replaced with their pad_values
"""
image_grid_thws = mm_inputs.image_grid_thws
pad_values = mm_inputs.pad_values
image_indices = [
idx for idx, token in enumerate(input_ids) if token == mm_inputs.im_token_id
]
mm_inputs.image_offsets = []
input_ids_with_image = []
for image_cnt, _ in enumerate(image_grid_thws):
# print(f"image_cnt {image_cnt}")
num_image_tokens = self.num_data_token_calc_func(image_grid_thws[image_cnt])
if image_cnt == 0:
non_image_tokens = input_ids[: image_indices[image_cnt]]
else:
non_image_tokens = input_ids[
image_indices[image_cnt - 1] + 1 : image_indices[image_cnt]
]
input_ids_with_image.extend(non_image_tokens)
mm_inputs.image_offsets.append(len(input_ids_with_image))
pad_ids = pad_values * (
(num_image_tokens + len(pad_values)) // len(pad_values)
)
input_ids_with_image.extend(pad_ids[:num_image_tokens])
input_ids_with_image.extend(input_ids[image_indices[-1] + 1 :])
return input_ids_with_image
class MultiModalityDataPaddingPatternImageTokens(MultiModalityDataPaddingPattern):
"""In this pattern, data tokens should be represented as image tokens (e.g. <image><image>....<image>)"""
"""In this pattern, data tokens should be represented as repetitions of a single token
e.g. <image><image>....<image>, or <audio><audio>...<audio>
"""
def __init__(self, image_token_id: torch.Tensor) -> None:
self.image_token_id = image_token_id
def pad_input_tokens(self, input_ids: List[int], image_inputs) -> List[int]:
def pad_input_tokens(self, input_ids: List[int], mm_inputs) -> List[int]:
"""
This function will replace the data-tokens in between with pad_values accordingly
"""
pad_values = image_inputs.pad_values
pad_values = [item.pad_value for item in mm_inputs.mm_items]
assert len(pad_values) != 0
input_ids_tensor = torch.tensor(input_ids)
......@@ -170,138 +123,227 @@ class MultiModalityDataPaddingPatternImageTokens(MultiModalityDataPaddingPattern
return input_ids_tensor.tolist()
def get_embedding_and_mask(
data_embedding_func: Callable[[List[MultimodalDataItem]], torch.Tensor],
embedding_items: List[MultimodalDataItem],
placeholder_tensor: torch.Tensor,
input_ids: torch.Tensor,
):
"""
Get the multimodal embedding and its mask from input_ids
"""
# 1. Get the embedding
embedding = data_embedding_func(embedding_items)
# 2. Check the embedding
if embedding.dim() == 2:
num_mm_tokens_in_embedding = embedding.shape[0]
else:
num_mm_tokens_in_embedding = embedding.shape[0] * embedding.shape[1]
# the mask of multimodal tokens from input_ids
special_multimodal_mask = torch.isin(
input_ids,
placeholder_tensor,
).unsqueeze(-1)
num_mm_tokens_in_input_ids = special_multimodal_mask.sum()
if num_mm_tokens_in_input_ids != num_mm_tokens_in_embedding:
logger.warning(
f"Number of tokens in multimodal embedding does not match those in the input text."
f"Got {num_mm_tokens_in_input_ids} tokens in the text but {num_mm_tokens_in_embedding} "
"tokens from multimodal embeddings."
)
if num_mm_tokens_in_input_ids < num_mm_tokens_in_embedding:
# TODO: chunked prefill will split special tokens from input_ids into several passes, failing the embedding
# a fix may be cache the unfinished multimodal embedding for future reuse, determine the tokens to embed with
# extend_start_loc and extend_seq_lens
chunked_prefill_size = global_server_args_dict["chunked_prefill_size"]
if chunked_prefill_size != -1:
logger.warning(
"You may want to avoid this issue by raising `chunked_prefill_size`, or disabling chunked prefill"
)
# extract from the end: this is a compromise
if embedding.dim() == 2:
embedding = embedding[-num_mm_tokens_in_input_ids:, :]
else:
num_multimodal = num_mm_tokens_in_input_ids // embedding.shape[0]
embedding = embedding[-num_multimodal:, :]
else:
raise RuntimeError(
"Insufficient multimodal embedding length. This is an internal error"
)
return embedding, special_multimodal_mask
def embed_mm_inputs(
mm_input: MultimodalInputs,
mm_inputs: MultimodalInputs,
input_ids: torch.Tensor,
input_embedding: nn.Embedding,
mm_data_embedding_func: Callable[[MultimodalInputs], torch.Tensor],
image_data_embedding_func: Callable[
[List[MultimodalDataItem]], torch.Tensor
] = None,
audio_data_embedding_func: Callable[
[List[MultimodalDataItem]], torch.Tensor
] = None,
placeholder_token_ids: List[int] = None,
) -> Optional[torch.Tensor]:
"""
Calculate the image embeddings if necessary, then scatter the result with
the help of a boolean mask denoting the embed locations
Calculate the multimodal embeddings if necessary, then scatter the result with the help of a boolean mask denoting the embed locations
Returns:
final embedding: Optional[torch.Tensor]
Args:
placeholder_token_ids: denoting the token of multimodal data in input_ids.
If none, the pad_values of multimodal items are used
Returns:
final embedding: Optional[torch.Tensor]
"""
if mm_input is None:
if mm_inputs is None:
return None
placeholder_token_ids = placeholder_token_ids or mm_input.pad_values
# 1. Calculate the multimodal data which exists in input_ids, with the help of pad_values
# we assume that multimodal data are represented with its pad_values in input_ids
placeholder_token_ids = placeholder_token_ids or [
item.pad_value for item in mm_inputs.mm_items
]
# boolean masking the special tokens
special_image_mask = torch.isin(
input_ids,
torch.tensor(placeholder_token_ids, device=input_ids.device),
).unsqueeze(-1)
placeholder_tensor = torch.tensor(placeholder_token_ids, device=input_ids.device)
num_image_tokens_in_input_ids = special_image_mask.sum()
# print(f"{num_image_tokens_in_input_ids}")
# print(f"{input_ids}")
placeholder_masks = torch.isin(input_ids, placeholder_tensor)
# return
if num_image_tokens_in_input_ids == 0:
# unexpected
appearing_pad_values = torch.unique(
input_ids[placeholder_masks], return_counts=False
)
if appearing_pad_values.numel() == 0:
# all been prefixed
inputs_embeds = input_embedding(input_ids)
else:
# print(f"Getting image feature")
image_embedding = mm_data_embedding_func(mm_input)
# print(f"image_embedding: {image_embedding.shape}")
appearing_items = [
item
for item in mm_inputs.mm_items
if item.pad_value is not None and item.pad_value in appearing_pad_values
]
if image_embedding.dim() == 2:
num_image_tokens_in_embedding = image_embedding.shape[0]
else:
num_image_tokens_in_embedding = (
image_embedding.shape[0] * image_embedding.shape[1]
using_all_items = False
if len(appearing_items) == 0:
# This happens mostly when arg placeholder_token_ids is passed
logger.warning_once(
"No multimodal data item's pad value exist in placeholder ids. Using all items"
)
if num_image_tokens_in_input_ids != num_image_tokens_in_embedding:
num_image = num_image_tokens_in_input_ids // image_embedding.shape[1]
image_embedding = image_embedding[:num_image, :]
logger.warning(
f"Number of images does not match number of special image tokens in the input text. "
f"Got {num_image_tokens_in_input_ids} image tokens in the text but {num_image_tokens_in_embedding} "
"tokens from image embeddings."
using_all_items = True
appearing_items = mm_inputs.mm_items
embeddings, masks = [], []
# 2. Get multimodal embedding separately
# TODO: make this more generic
# Try get image embedding if any
if (
any(True for item in appearing_items if item.is_image())
and image_data_embedding_func
):
items = [item for item in appearing_items if item.is_image()]
embedding, mask = get_embedding_and_mask(
data_embedding_func=image_data_embedding_func,
embedding_items=items,
placeholder_tensor=(
placeholder_tensor
if using_all_items
else torch.tensor(
[item.pad_value for item in items],
device=input_ids.device,
)
),
input_ids=input_ids,
)
embeddings += [embedding]
masks += [mask]
# TODO: chunked prefill will split special tokens from input_ids into several passes, failing the embedding
# a fix may be cache the unfinished image embedding for future reuse, determine the tokens to embed with
# extend_start_loc and extend_seq_lens
if num_image_tokens_in_input_ids > num_image_tokens_in_embedding:
chunked_prefill_size = global_server_args_dict["chunked_prefill_size"]
if chunked_prefill_size != -1:
logger.warning(
"You may want to avoid this issue by raising `chunked_prefill_size`, or disabling chunked_prefill"
# Try get audio embedding if any
if (
any(True for item in appearing_items if item.is_audio())
and audio_data_embedding_func
):
items = [item for item in appearing_items if item.is_audio()]
embedding, mask = get_embedding_and_mask(
data_embedding_func=audio_data_embedding_func,
embedding_items=items,
placeholder_tensor=(
placeholder_tensor
if using_all_items
else torch.tensor(
[item.pad_value for item in items],
device=input_ids.device,
)
),
input_ids=input_ids,
)
embeddings += [embedding]
masks += [mask]
# 3. Get input embeddings
vocab_size = input_embedding.num_embeddings
# Important: clamp after getting original image regions
# Clamp input ids. This is because the input_ids for the image tokens are
# filled with the hash values of the image for the prefix matching in the radix attention.
# Important: clamp after getting original multimodal regions
# Clamp input ids. This is because the input_ids for the multimodal tokens are
# filled with the hash values of the multimodal for the prefix matching in the radix attention.
# There values are useless because their embeddings will be replaced by vision embeddings anyway.
input_ids.clamp_(min=0, max=vocab_size - 1)
inputs_embeds = input_embedding(input_ids)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(
inputs_embeds.device
)
inputs_embeds = inputs_embeds.masked_scatter(
special_image_mask,
image_embedding.to(inputs_embeds.device, inputs_embeds.dtype),
)
return inputs_embeds
def embed_image_embedding(
inputs_embeds: torch.Tensor,
image_embedding: torch.Tensor,
image_bounds: torch.Tensor,
) -> torch.Tensor:
"""
scatter image_embedding into inputs_embeds according to image_bounds
"""
if len(image_bounds) > 0:
image_indices = torch.stack(
[
torch.arange(start, end, dtype=torch.long)
for start, end in image_bounds.tolist()
]
).to(inputs_embeds.device)
inputs_embeds.scatter_(
0,
image_indices.view(-1, 1).repeat(1, inputs_embeds.shape[-1]),
image_embedding.view(-1, image_embedding.shape[-1]),
)
# 4. scatter embeddings into input embedding
for embedding, mask in zip(embeddings, masks):
mask = mask.expand_as(inputs_embeds).to(inputs_embeds.device)
inputs_embeds = inputs_embeds.masked_scatter(
mask,
embedding.to(inputs_embeds.device, inputs_embeds.dtype),
)
return inputs_embeds
def general_mm_embed_routine(
input_ids: torch.Tensor,
forward_batch: ForwardBatch,
embed_tokens: nn.Embedding,
mm_data_embedding_func: Callable[[MultimodalInputs], torch.Tensor],
language_model: nn.Module,
image_data_embedding_func: Callable[
[List[MultimodalDataItem]], torch.Tensor
] = None,
audio_data_embedding_func: Callable[
[List[MultimodalDataItem]], torch.Tensor
] = None,
placeholder_token_ids: List[int] = None,
):
**kwargs,
) -> torch.Tensor:
"""
a general wrapper function to get final input embeds from multimodal models
with a language model as causal model
A general wrapper function to get final input embeds from multimodal models with a language model as causal model
Args:
placeholder_token_ids (List[int]): the ids of mm data placeholder tokens
image_data_embedding_func : the function returning the image embedding
audio_data_embedding_func : the function returning the image embedding
Returns:
inputs_embedding
forwarded hidden states
"""
assert hasattr(language_model, "get_input_embeddings")
embed_tokens = language_model.get_input_embeddings()
if (
not forward_batch.forward_mode.is_decode()
and forward_batch.contains_mm_inputs()
):
image = forward_batch.merge_mm_inputs()
mm_input = forward_batch.merge_mm_inputs()
inputs_embeds = embed_mm_inputs(
mm_input=image,
mm_inputs=mm_input,
input_ids=input_ids,
input_embedding=embed_tokens,
mm_data_embedding_func=mm_data_embedding_func,
image_data_embedding_func=image_data_embedding_func,
audio_data_embedding_func=audio_data_embedding_func,
placeholder_token_ids=placeholder_token_ids,
)
# once used, mm_inputs is useless
......@@ -310,7 +352,13 @@ def general_mm_embed_routine(
else:
inputs_embeds = embed_tokens(input_ids)
return inputs_embeds
hidden_states = language_model(
input_ids=None,
forward_batch=forward_batch,
input_embeds=inputs_embeds,
**kwargs,
)
return hidden_states
def get_multimodal_data_bounds(
......@@ -322,15 +370,13 @@ def get_multimodal_data_bounds(
Returns:
[bounds_count, 2]
"""
# All the images in the batch should share the same special image
# bound token ids.
# All the multimodal data in the batch should share the same special bound token ids.
start_tokens = [s for s, _e in token_pairs]
end_tokens = [e for _s, e in token_pairs]
assert all(isinstance(t, int) for t in start_tokens)
assert all(isinstance(t, int) for t in end_tokens)
# print(input_ids)
start_cond = torch.isin(
input_ids, torch.tensor(start_tokens, device=input_ids.device)
)
......@@ -339,7 +385,7 @@ def get_multimodal_data_bounds(
(data_start_tokens,) = torch.where(start_cond)
(data_end_tokens,) = torch.where(end_cond)
# the im_start_id sometimes can be cached as prefix, but it is needed for the embedding of the images
# the im_start_id sometimes can be cached as prefix, but it is needed for the embedding of the multimodal data
if len(data_start_tokens) != len(data_end_tokens):
if (
len(data_start_tokens) + 1 == len(data_end_tokens)
......@@ -352,14 +398,14 @@ def get_multimodal_data_bounds(
data_start_tokens,
]
)
valid_image_nums = min(len(data_start_tokens), len(data_end_tokens))
valid_mm_data_nums = min(len(data_start_tokens), len(data_end_tokens))
if valid_image_nums == 0:
if valid_mm_data_nums == 0:
return torch.zeros((0, 2), device=input_ids.device)
# Filter out pairs where start_token >= end_token
valid_pairs = []
for i in range(valid_image_nums):
for i in range(valid_mm_data_nums):
start_token = data_start_tokens[i]
end_token = data_end_tokens[i]
if start_token < end_token:
......
......@@ -64,5 +64,3 @@ def get_mm_processor(
f"No processor registered for architecture: {hf_config.architectures}.\n"
f"Registered architectures: {[model_cls.__name__ for model_cls in PROCESSOR_MAPPING.keys()]}"
)
self.image_proce
......@@ -8,18 +8,10 @@ from typing import Optional
import numpy as np
import PIL
import transformers
from decord import VideoReader, cpu
from PIL import Image
from sglang.srt.utils import load_audio, load_image, logger
global global_processor
def get_global_processor():
global global_processor
return global_processor
from sglang.srt.utils import encode_video, load_audio, load_image, logger
@dataclasses.dataclass
......@@ -27,9 +19,6 @@ class BaseMultiModalProcessorOutput:
# input_text, with each frame of video/image represented with a image_token
input_text: str
mm_data_hashes: Optional[list[int]]
# images
image_sizes: Optional[list[int]]
# frames loaded from image and video, in given order
images: Optional[list[PIL.Image]] = None
......@@ -37,7 +26,7 @@ class BaseMultiModalProcessorOutput:
audios: Optional[list[np.ndarray]] = None
def normalize(self):
for field_name in ["data_hashes", "image_sizes", "images", "audios"]:
for field_name in ["image_sizes", "images", "audios"]:
field = getattr(self, field_name, None)
if field is not None and isinstance(field, list) and len(field) == 0:
setattr(self, field_name, None)
......@@ -67,28 +56,35 @@ class BaseMultimodalProcessor(ABC):
# FIXME: not accurate, model and image specific
self.NUM_TOKEN_PER_FRAME = 330
# Initialize global processor first
init_global_processor(self, server_args)
self.executor = concurrent.futures.ProcessPoolExecutor(
initializer=init_global_processor,
self.io_executor = concurrent.futures.ThreadPoolExecutor(
max_workers=int(os.environ.get("SGLANG_IO_WORKERS", 4))
)
self.cpu_executor = concurrent.futures.ProcessPoolExecutor(
mp_context=mp.get_context("fork"),
initargs=(
self,
server_args,
),
max_workers=int(os.environ.get("SGLANG_CPU_COUNT", os.cpu_count())),
max_workers=int(os.environ.get("SGLANG_CPU_WORKERS", os.cpu_count())),
)
def _build_processor(self, server_args):
"""Init the global processor for multi modal models."""
from sglang.srt.hf_transformers_utils import get_processor
return get_processor(
server_args.tokenizer_path,
tokenizer_mode=server_args.tokenizer_mode,
trust_remote_code=server_args.trust_remote_code,
def process_mm_data(
self, input_text, images=None, videos=None, audios=None, **kwargs
):
"""
process multimodal data with transformers AutoProcessor
"""
if images is not None:
kwargs["images"] = images
if videos is not None:
kwargs["videos"] = videos
if audios is not None:
kwargs["audios"] = audios
processor = self._processor
result = processor.__call__(
text=[input_text],
padding=True,
return_tensors="pt",
**kwargs,
)
return result
@abstractmethod
async def process_mm_data_async(
......@@ -115,33 +111,9 @@ class BaseMultimodalProcessor(ABC):
return estimated_frames_list
@staticmethod
def encode_video(video_path, frame_count_limit=None):
if not os.path.exists(video_path):
logger.error(f"Video {video_path} does not exist")
return []
if frame_count_limit == 0:
return []
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
vr = VideoReader(video_path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1) # FPS
frame_indices = [i for i in range(0, len(vr), sample_fps)]
if frame_count_limit is not None and len(frame_indices) > frame_count_limit:
frame_indices = uniform_sample(frame_indices, frame_count_limit)
frames = vr.get_batch(frame_indices).asnumpy()
frames = [Image.fromarray(v.astype("uint8")) for v in frames]
return frames
def load_mm_data(
self,
input_ids: list[int],
prompt: str,
multimodal_tokens: MultimodalSpecialTokens,
max_req_input_len: int,
image_data: Optional[list] = None,
......@@ -167,11 +139,13 @@ class BaseMultimodalProcessor(ABC):
else:
multimodal_tokens.image_token = multimodal_tokens.image_token
if isinstance(input_ids, list) and return_text:
assert len(input_ids) and isinstance(input_ids[0], int)
input_text = self._processor.tokenizer.decode(input_ids)
assert isinstance(prompt, str)
if isinstance(prompt, list) and return_text:
assert len(prompt) and isinstance(prompt[0], int)
prompt = self._processor.tokenizer.decode(prompt)
else:
input_text = input_ids
prompt = prompt
if return_text:
import re
......@@ -181,7 +155,7 @@ class BaseMultimodalProcessor(ABC):
+ ")"
)
# split text into list of normal text and special tokens
text_parts = re.split(pattern, input_text)
text_parts = re.split(pattern, prompt)
# TODO(mick): load from server_args, env, or sampling_params
MAX_NUM_FRAMES = 30
......@@ -217,7 +191,7 @@ class BaseMultimodalProcessor(ABC):
):
# video
path = image_file[len("video:") :]
frames = BaseMultimodalProcessor.encode_video(
frames = encode_video(
path, frame_count_limit=frames_to_process
)
else:
......@@ -254,19 +228,9 @@ class BaseMultimodalProcessor(ABC):
raise RuntimeError(f"An exception occurred while loading images: {e}")
out = BaseMultiModalProcessorOutput(
mm_data_hashes=hashes,
image_sizes=image_sizes,
images=images,
audios=audios,
input_text=new_text,
)
out.normalize()
return out
def init_global_processor(sglang_processor: BaseMultimodalProcessor, server_args):
"""
Init the global processor for multimodal models."""
global global_processor
transformers.logging.set_verbosity_error()
global_processor = sglang_processor._build_processor(server_args=server_args)
import asyncio
from typing import List, Union
from sglang.srt.managers.multimodal_processors.base_processor import (
BaseMultimodalProcessor,
get_global_processor,
)
from sglang.srt.managers.schedule_batch import Modality, MultimodalDataItem
from sglang.srt.models.clip import CLIPModel
from sglang.srt.utils import load_image
......@@ -15,29 +14,6 @@ class ClipImageProcessor(BaseMultimodalProcessor):
def __init__(self, hf_config, server_args, _processor):
super().__init__(hf_config, server_args, _processor)
@staticmethod
def _process_single_image_task(images, input_text):
# input_ids', 'attention_mask', 'pixel_values', 'aspect_ratio_ids', 'aspect_ratio_mask', 'cross_attention_mask'
return get_global_processor()(
images=images, text=input_text, return_tensors="pt"
)
async def _process_single_image(self, images, input_text):
if self.executor is not None:
loop = asyncio.get_event_loop()
image_inputs = await loop.run_in_executor(
self.executor,
ClipImageProcessor._process_single_image_task,
images,
input_text,
)
else:
image_inputs = self._processor(
images=images, text=[input_text], return_tensors="pt"
)
return image_inputs
async def process_mm_data_async(
self, image_data: List[Union[str, bytes]], input_text, *args, **kwargs
):
......@@ -56,8 +32,13 @@ class ClipImageProcessor(BaseMultimodalProcessor):
else:
images = load_image(image_data[0])[0]
image_inputs = await self._process_single_image(images, input_text)
image_inputs = self.process_mm_data(input_text=input_text, images=images)
image_inputs["data_hashes"] = [hash(str(image_data))]
image_inputs["input_ids"] = image_inputs["input_ids"].tolist()[0]
image_inputs["mm_items"] = [
MultimodalDataItem(
pixel_values=image_inputs["pixel_values"], modality=Modality.IMAGE
)
]
return image_inputs
......@@ -16,15 +16,14 @@
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import asyncio
import torch
from sglang.srt.managers.multimodal_processors.base_processor import (
BaseMultimodalProcessor,
MultimodalSpecialTokens,
get_global_processor,
)
from sglang.srt.managers.schedule_batch import Modality, MultimodalDataItem
from sglang.srt.models.deepseek_vl2 import DeepseekVL2ForCausalLM
......@@ -35,51 +34,6 @@ class DeepseekVL2ImageProcessor(BaseMultimodalProcessor):
super().__init__(hf_config, server_args, _processor)
self.IMAGE_TOKEN = "<image>"
@staticmethod
def _process_images_task(image, input_text, max_req_input_len):
processor = get_global_processor()
res = processor.__call__(
conversations=input_text, images=image, max_req_input_len=max_req_input_len
)
image_token_id = processor.image_token_id
res["im_token_id"] = image_token_id
return res
async def _process_images(self, image_data, input_text, max_req_input_len):
if self.executor is not None:
loop = asyncio.get_event_loop()
image_inputs = await loop.run_in_executor(
self.executor,
DeepseekVL2ImageProcessor._process_images_task,
image_data,
input_text,
max_req_input_len,
)
else:
image_inputs = self._process_images_task(
image_data, input_text, max_req_input_len
)
return image_inputs
async def _process_images(self, image_data, input_text, max_req_input_len):
if self.executor is not None:
loop = asyncio.get_event_loop()
image_inputs = await loop.run_in_executor(
self.executor,
DeepseekVL2ImageProcessor._process_images_task,
image_data,
input_text,
max_req_input_len,
)
else:
image_inputs = self._process_images_task(
image_data, input_text, max_req_input_len
)
return image_inputs
async def process_mm_data_async(
self, image_data, input_ids, request_obj, max_req_input_len, *args, **kwargs
):
......@@ -89,8 +43,6 @@ class DeepseekVL2ImageProcessor(BaseMultimodalProcessor):
if not isinstance(image_data, list):
image_data = [image_data]
images, image_sizes = [], []
image_token = self.IMAGE_TOKEN
base_output = self.load_mm_data(
input_ids,
......@@ -98,8 +50,11 @@ class DeepseekVL2ImageProcessor(BaseMultimodalProcessor):
multimodal_tokens=MultimodalSpecialTokens(image_token=image_token),
max_req_input_len=max_req_input_len,
)
res = await self._process_images(
base_output.images, base_output.input_text, max_req_input_len
res = self.process_mm_data(
input_text=base_output.input_text,
images=base_output.images,
max_req_input_len=max_req_input_len,
conversations=base_output.input_text,
)
images_seq_mask = res["images_seq_mask"]
images_spatial_crop = res["images_spatial_crop"]
......@@ -107,13 +62,17 @@ class DeepseekVL2ImageProcessor(BaseMultimodalProcessor):
batched_images_spatial_crop.append(images_spatial_crop)
batched_images_spatial_crop = torch.stack(batched_images_spatial_crop, dim=0)
items = []
item = MultimodalDataItem(
pixel_values=res["images"],
modality=Modality.IMAGE,
image_emb_mask=images_seq_mask,
image_spatial_crop=batched_images_spatial_crop,
)
items += [item]
return {
"mm_items": items,
"input_ids": res["input_ids"].tolist(),
"pixel_values": res["images"],
"im_token_id": res["im_token_id"],
"data_hashes": base_output.mm_data_hashes,
"image_sizes": image_sizes,
"images_emb_mask": images_seq_mask,
"image_spatial_crop": batched_images_spatial_crop,
"modalities": request_obj.modalities or ["image"],
"im_token_id": self._processor.image_token_id,
}
......@@ -7,8 +7,8 @@ from sglang.srt.managers.multimodal_processor import (
)
from sglang.srt.managers.multimodal_processors.base_processor import (
MultimodalSpecialTokens,
get_global_processor,
)
from sglang.srt.managers.schedule_batch import Modality, MultimodalDataItem
from sglang.srt.models.gemma3_mm import Gemma3ForConditionalGeneration
# Copied from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gemma3/image_processing_gemma3_fast.py
......@@ -25,28 +25,6 @@ class Gemma3SGLangImageProcessor(SGLangBaseProcessor):
self.IM_START_TOKEN_ID = hf_config.boi_token_index
self.IM_END_TOKEN_ID = hf_config.eoi_token_index
async def _process_single_image(self, images, input_text) -> dict:
if isinstance(images, list) and len(images) == 0:
images = None
processor = get_global_processor()
result = processor.__call__(
text=[input_text],
images=images,
padding=True,
return_tensors="pt",
# if RGBA, this needs to be set
# images_kwargs={
# "input_data_format": ChannelDimension.FIRST
# }
)
pixel_values = getattr(result, "pixel_values", None)
return {
"input_ids": result.input_ids,
"pixel_values": pixel_values,
}
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
......@@ -63,21 +41,28 @@ class Gemma3SGLangImageProcessor(SGLangBaseProcessor):
image_token = self.IMAGE_TOKEN
base_output = self.load_mm_data(
input_ids=input_ids,
prompt=input_ids,
image_data=image_data,
multimodal_tokens=MultimodalSpecialTokens(image_token=image_token),
max_req_input_len=max_req_input_len,
discard_alpha_channel=True,
)
ret = await self._process_single_image(
ret = self.process_mm_data(
input_text=base_output.input_text, images=base_output.images
)
items = []
for i, image in enumerate(base_output.images):
item = MultimodalDataItem(
pixel_values=ret["pixel_values"][i],
modality=Modality.IMAGE,
)
items += [item]
return {
"mm_items": items,
"input_ids": ret["input_ids"].flatten().tolist(),
"pixel_values": ret["pixel_values"],
"data_hashes": base_output.mm_data_hashes,
"im_start_id": self.IM_START_TOKEN_ID,
"im_end_id": self.IM_END_TOKEN_ID,
}
import asyncio
from typing import List, Union
from sglang.srt.managers.multimodal_processors.base_processor import (
BaseMultimodalProcessor,
MultimodalSpecialTokens,
get_global_processor,
)
from sglang.srt.managers.schedule_batch import Modality, MultimodalDataItem
from sglang.srt.models.deepseek_janus_pro import MultiModalityCausalLM
......@@ -15,37 +14,6 @@ class JanusProImageProcessor(BaseMultimodalProcessor):
def __init__(self, hf_config, server_args, _processor):
super().__init__(hf_config, server_args, _processor)
@staticmethod
def _process_images_task(images, input_text):
processor = get_global_processor()
result = processor.__call__(
prompt=input_text, images=images, return_tensors="pt"
)
return {
"input_ids": result["input_ids"],
"pixel_values": result["pixel_values"],
"images_emb_mask": result["images_emb_mask"],
"im_start_id": processor.image_start_id,
"im_end_id": processor.image_end_id,
"im_token_id": processor.image_id,
}
async def _process_images(self, images, input_text):
if self.executor is not None:
loop = asyncio.get_event_loop()
image_inputs = await loop.run_in_executor(
self.executor,
JanusProImageProcessor._process_images_task,
images,
input_text,
)
else:
image_inputs = self._processor(
images=images, text=input_text, return_tensors="pt"
)
return image_inputs
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
......@@ -60,25 +28,31 @@ class JanusProImageProcessor(BaseMultimodalProcessor):
if not isinstance(image_data, list):
image_data = [image_data]
processor = self._processor
base_out = self.load_mm_data(
input_ids=input_ids,
prompt=input_ids,
image_data=image_data,
multimodal_tokens=MultimodalSpecialTokens(
image_token="<image_placeholder>"
),
multimodal_tokens=MultimodalSpecialTokens(image_token=processor.image_tag),
max_req_input_len=max_req_input_len,
)
images = base_out.images
res = await self._process_images(images=images, input_text=base_out.input_text)
# print(res)
# print(base_out)
# print("", res["images_emb_mask"].shape)
res = self.process_mm_data(
input_text=base_out.input_text,
prompt=base_out.input_text,
images=images,
)
return {
"mm_items": [
MultimodalDataItem(
pixel_values=res["pixel_values"],
image_emb_mask=res["images_emb_mask"],
modality=Modality.IMAGE,
)
],
"input_ids": res["input_ids"].flatten().tolist(),
"pixel_values": res["pixel_values"],
"images_emb_mask": res["images_emb_mask"],
"data_hashes": base_out.mm_data_hashes,
"im_start_id": res["im_start_id"],
"im_end_id": res["im_end_id"],
"im_token_id": res["im_token_id"],
"im_start_id": processor.image_start_id,
"im_end_id": processor.image_end_id,
"im_token_id": processor.image_id,
}
......@@ -5,8 +5,8 @@ import numpy as np
from sglang.srt.managers.multimodal_processors.base_processor import (
BaseMultimodalProcessor,
get_global_processor,
)
from sglang.srt.managers.schedule_batch import Modality, MultimodalDataItem
from sglang.srt.mm_utils import expand2square, process_anyres_image
from sglang.srt.models.llava import LlavaMistralForCausalLM, LlavaQwenForCausalLM
from sglang.srt.models.llavavid import LlavaVidForCausalLM
......@@ -25,11 +25,10 @@ class LlavaImageProcessor(BaseMultimodalProcessor):
image_data: Union[str, bytes],
image_aspect_ratio: Optional[str] = None,
image_grid_pinpoints: Optional[str] = None,
image_processor=None,
processor=None,
):
processor = get_global_processor()
image_processor = image_processor or processor.image_processor
image_processor = processor.image_processor
try:
image, image_size = load_image(image_data)
......@@ -72,18 +71,22 @@ class LlavaImageProcessor(BaseMultimodalProcessor):
async def _process_single_image(
self, image_data: Union[bytes, str], aspect_ratio: str, grid_pinpoints: str
):
if self.executor is not None:
if self.cpu_executor is not None:
loop = asyncio.get_event_loop()
return await loop.run_in_executor(
self.executor,
self.cpu_executor,
LlavaImageProcessor._process_single_image_task,
image_data,
aspect_ratio,
grid_pinpoints,
self._processor,
)
else:
return self._process_single_image_task(
image_data, aspect_ratio, grid_pinpoints
image_data,
aspect_ratio,
grid_pinpoints,
self._processor.image_processor,
)
async def process_mm_data_async(
......@@ -134,14 +137,22 @@ class LlavaImageProcessor(BaseMultimodalProcessor):
pixel_values, image_hash, image_size = await self._process_single_image(
image_data[0], aspect_ratio, grid_pinpoints
)
data_hashes = [image_hash]
image_sizes = [image_size]
else:
raise ValueError(f"Invalid image data: {image_data}")
modality = Modality.IMAGE
if isinstance(request_obj.modalities, list):
if request_obj.modalities[0] == "multi-images":
modality = Modality.MULTI_IMAGES
elif request_obj.modalities[0] == "video":
modality = Modality.VIDEO
return {
"pixel_values": pixel_values,
"data_hashes": data_hashes,
"image_sizes": image_sizes,
"modalities": request_obj.modalities or ["image"],
"mm_items": [
MultimodalDataItem(
pixel_values=pixel_values,
image_sizes=image_sizes,
modality=modality,
)
],
}
import asyncio
from typing import List, Union
import torch
from transformers import BaseImageProcessorFast
from sglang.srt.managers.multimodal_processors.base_processor import (
BaseMultimodalProcessor,
MultimodalSpecialTokens,
get_global_processor,
)
from sglang.srt.managers.schedule_batch import Modality, MultimodalDataItem
from sglang.srt.models.minicpmo import MiniCPMO
from sglang.srt.models.minicpmv import MiniCPMV
......@@ -21,19 +21,23 @@ class MiniCPMMultimodalProcessor(BaseMultimodalProcessor):
self.image_token = "(<image>./</image>)"
self.audio_token = "(<audio>./</audio>)"
@staticmethod
def _process_data_task(input_text, images=None, audios=None):
def process_data_task(self, input_text, images=None, audios=None):
if isinstance(images, list) and len(images) == 0:
images = None
if isinstance(audios, list) and len(audios) == 0:
audios = None
result = get_global_processor().__call__(
processor = self._processor
args = {}
if isinstance(processor, BaseImageProcessorFast):
args["device"] = "cuda"
result = self._processor.__call__(
text=input_text,
images=images,
audios=audios,
return_tensors="pt",
chunk_input=True,
**args,
)
return {
"input_ids": result.input_ids,
......@@ -44,23 +48,6 @@ class MiniCPMMultimodalProcessor(BaseMultimodalProcessor):
"audio_bounds": getattr(result, "audio_bounds", None),
}
async def _process_data(self, images, input_text, audios=None):
if self.executor is not None:
loop = asyncio.get_event_loop()
multimodal_data_inputs = await loop.run_in_executor(
self.executor,
MiniCPMMultimodalProcessor._process_data_task,
input_text,
images,
audios,
)
else:
multimodal_data_inputs = self._processor(
images=images, text=input_text, audios=audios, return_tensors="pt"
)
return multimodal_data_inputs
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
......@@ -77,7 +64,7 @@ class MiniCPMMultimodalProcessor(BaseMultimodalProcessor):
audio_data = [audio_data]
base_output = self.load_mm_data(
input_ids=input_ids,
prompt=input_ids,
max_req_input_len=max_req_input_len,
audio_data=audio_data,
image_data=image_data,
......@@ -88,9 +75,9 @@ class MiniCPMMultimodalProcessor(BaseMultimodalProcessor):
if base_output is None:
return None
res = await self._process_data(
images=base_output.images,
res = self.process_mm_data(
input_text=base_output.input_text,
images=base_output.images,
audios=base_output.audios,
)
......@@ -142,23 +129,33 @@ class MiniCPMMultimodalProcessor(BaseMultimodalProcessor):
tgt_sizes_flat += [tgt_n]
pixel_values = pixel_values_flat
if len(tgt_sizes_flat) == 0:
tgt_sizes = None
else:
tgt_sizes = torch.stack(tgt_sizes_flat)
if not isinstance(res["audio_features"], list):
res["audio_features"] = [res["audio_features"]]
items = []
if len(pixel_values) != 0:
item = MultimodalDataItem(
pixel_values=pixel_values,
tgt_size=tgt_sizes_flat,
modality=Modality.IMAGE,
)
items += [item]
if (
"audio_features" in res
and res["audio_features"] is not None
and len(res["audio_features"]) != 0
):
item = MultimodalDataItem(
audio_features=[res["audio_features"]],
audio_feature_lens=res["audio_feature_lens"],
modality=Modality.AUDIO,
)
items += [item]
return {
"mm_items": items,
"input_ids": res["input_ids"].flatten().tolist(),
"pixel_values": pixel_values,
"tgt_sizes": tgt_sizes,
"data_hashes": base_output.mm_data_hashes,
"modalities": request_obj.modalities or ["image"],
"audio_start_id": audio_start_id,
"audio_end_id": audio_end_id,
"audio_features": res["audio_features"],
"audio_bounds": res["audio_bounds"],
"audio_feature_lens": res["audio_feature_lens"],
"im_token_id": im_token_id,
"im_start_id": tokenizer.im_start_id,
"im_end_id": tokenizer.im_end_id,
......
import asyncio
from typing import List, Union
from sglang.srt.managers.multimodal_processors.base_processor import (
BaseMultimodalProcessor,
get_global_processor,
)
from sglang.srt.managers.schedule_batch import Modality, MultimodalDataItem
from sglang.srt.models.mllama import MllamaForConditionalGeneration
from sglang.srt.utils import load_image
......@@ -15,25 +14,6 @@ class MllamaImageProcessor(BaseMultimodalProcessor):
def __init__(self, hf_config, server_args, _processor):
super().__init__(hf_config, server_args, _processor)
@staticmethod
def _process_single_image_task(images, input_text):
# input_ids', 'attention_mask', 'pixel_values', 'aspect_ratio_ids', 'aspect_ratio_mask', 'cross_attention_mask'
return get_global_processor()(images, input_text, return_tensors="pt")
async def _process_single_image(self, images, input_text):
if self.executor is not None:
loop = asyncio.get_event_loop()
image_inputs = await loop.run_in_executor(
self.executor,
MllamaImageProcessor._process_single_image_task,
images,
input_text,
)
else:
image_inputs = self._processor(images, input_text, return_tensors="pt")
return image_inputs
async def process_mm_data_async(
self, image_data: List[Union[str, bytes]], input_text, *args, **kwargs
):
......@@ -52,8 +32,15 @@ class MllamaImageProcessor(BaseMultimodalProcessor):
else:
images = load_image(image_data[0])[0]
image_inputs = await self._process_single_image(images, input_text)
image_inputs["data_hashes"] = [hash(str(image_data))]
image_inputs = self.process_mm_data(input_text=input_text, images=images)
image_inputs["input_ids"] = image_inputs["input_ids"].tolist()[0]
image_inputs["mm_items"] = [
MultimodalDataItem(
pixel_values=image_inputs["pixel_values"],
aspect_ratio_id=image_inputs["aspect_ratio_ids"],
aspect_ratio_mask=image_inputs["aspect_ratio_mask"],
modality=Modality.IMAGE,
)
]
return image_inputs
import asyncio
import math
import time
from typing import List, Union
import torch
......@@ -11,8 +10,8 @@ from sglang.srt.managers.multimodal_processor import (
)
from sglang.srt.managers.multimodal_processors.base_processor import (
MultimodalSpecialTokens,
get_global_processor,
)
from sglang.srt.managers.schedule_batch import Modality, MultimodalDataItem
from sglang.srt.models.qwen2_5_vl import Qwen2_5_VLForConditionalGeneration
from sglang.srt.models.qwen2_vl import Qwen2VLForConditionalGeneration
......@@ -34,45 +33,15 @@ class Qwen2_5VLImageProcessor(SGLangBaseProcessor):
self.MAX_PIXELS = 16384 * 28 * 28
self.MAX_RATIO = 200
@staticmethod
def _process_images_task(images, input_text, _hf_config):
if isinstance(images, list) and len(images) == 0:
images = None
result = get_global_processor().__call__(
text=[input_text], images=images, padding=True, return_tensors="pt"
)
return {
"input_ids": result.input_ids,
"pixel_values": getattr(result, "pixel_values", None),
"image_grid_thw": getattr(result, "image_grid_thw", None),
"second_per_grid_ts": getattr(result, "second_per_grid_ts", None),
"video_grid_thws": getattr(result, "video_grid_thws", None),
}
async def _process_single_image(self, images, input_text) -> dict:
if self.executor is not None:
loop = asyncio.get_event_loop()
return await loop.run_in_executor(
self.executor,
Qwen2_5VLImageProcessor._process_images_task,
images,
input_text,
self.hf_config,
)
else:
return self._process_images_task(images, input_text, self.hf_config)
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
input_ids,
prompt,
request_obj,
max_req_input_len,
*args,
**kwargs,
):
start = time.time()
if not image_data:
return None
if isinstance(image_data, str):
......@@ -80,7 +49,7 @@ class Qwen2_5VLImageProcessor(SGLangBaseProcessor):
image_token = self.IMAGE_TOKEN
base_output = self.load_mm_data(
input_ids=input_ids,
prompt=prompt,
image_data=image_data,
multimodal_tokens=MultimodalSpecialTokens(image_token=image_token),
max_req_input_len=max_req_input_len,
......@@ -144,24 +113,32 @@ class Qwen2_5VLImageProcessor(SGLangBaseProcessor):
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
images = [resize_image(image) for image in base_output.images]
async def resize_image_async(image):
return resize_image(image)
ret = await self._process_single_image(
images=images, input_text=base_output.input_text
resize_tasks = [resize_image_async(image) for image in base_output.images]
resized_images = await asyncio.gather(*resize_tasks)
ret = self.process_mm_data(
input_text=base_output.input_text,
images=resized_images,
)
image_grid_thws = torch.concat([ret["image_grid_thw"]])
video_grid_thws = None
return {
"input_ids": ret["input_ids"].flatten().tolist(),
"pixel_values": ret["pixel_values"],
"data_hashes": base_output.mm_data_hashes,
"modalities": request_obj.modalities or ["image"],
"image_grid_thws": image_grid_thws,
"video_grid_thws": video_grid_thws,
"mm_items": [
MultimodalDataItem(
pixel_values=ret["pixel_values"],
image_grid_thws=image_grid_thws,
# TODO
video_grid_thws=None,
second_per_grid_ts=ret.get("second_per_grid_ts", None),
modality=Modality.IMAGE,
)
],
"im_start_id": self.IM_START_TOKEN_ID,
"im_end_id": self.IM_END_TOKEN_ID,
"im_token_id": self.image_token_id,
"video_token_id": self.video_token_id,
"second_per_grid_ts": ret["second_per_grid_ts"],
}
from __future__ import annotations
from enum import Enum, auto
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -51,7 +53,7 @@ from sglang.srt.model_executor.forward_batch_info import CaptureHiddenMode, Forw
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
from sglang.srt.sampling.sampling_params import SamplingParams
from sglang.srt.server_args import ServerArgs
from sglang.srt.utils import get_compiler_backend
from sglang.srt.utils import flatten_nested_list, get_compiler_backend
if TYPE_CHECKING:
from sglang.srt.speculative.eagle_utils import EagleDraftInput, EagleVerifyInput
......@@ -143,165 +145,185 @@ class FINISH_ABORT(BaseFinishReason):
}
class Modality(Enum):
IMAGE = auto()
MULTI_IMAGES = auto()
VIDEO = auto()
AUDIO = auto()
@dataclasses.dataclass
class MultimodalInputs:
"""The image related inputs."""
class MultimodalDataItem:
"""
A single multimodal data, from a single image/video/audio or other
"""
modality: Modality
hash: int = None
pad_value: int = None
aspect_ratio_id: Optional[List[torch.Tensor]] = None
aspect_ratio_mask: Optional[List[torch.Tensor]] = None
pixel_values: Union[torch.Tensor, np.array]
data_hashes: Optional[list] = None
image_sizes: Optional[list] = None
image_sizes: Tuple[int, int] = None
image_offsets: Optional[list] = None
# the real data, pixel_values or audio_features
# data: Union[List[torch.Tensor], List[np.array]]
pixel_values: Union[torch.Tensor, np.array] = None
image_grid_thws: Union[torch.Tensor, np.array] = None
video_grid_thws: Union[torch.Tensor, np.array] = None
image_emb_mask: Optional[torch.Tensor] = None
image_spatial_crop: Optional[torch.Tensor] = None
second_per_grid_ts: Optional[List[torch.Tensor]] = None
# [num_images, (n, w, h)]
tgt_size: Tuple[int, int] = None
audio_features: Union[torch.Tensor, np.array] = None
audio_feature_lens: Optional[List[torch.Tensor]] = None
@staticmethod
def is_empty_list(l):
if l is None:
return True
return len([item for item in flatten_nested_list(l) if item is not None]) == 0
def set_pad_value(self):
"""
Set the pad value after first hashign the data
"""
def hash_feature(f):
if isinstance(f, list):
return hash(tuple(flatten_nested_list(f)))
elif isinstance(f, np.ndarray):
arr = np.ascontiguousarray(f)
arr_bytes = arr.tobytes()
return hash(arr_bytes)
return hash(f)
if self.is_audio():
self.hash = hash_feature(self.audio_features)
else:
self.hash = hash_feature(self.pixel_values)
assert self.hash is not None
self.pad_value = self.hash % (1 << 30)
def is_audio(self):
return (
self.modality == Modality.AUDIO
) and not MultimodalDataItem.is_empty_list(self.audio_features)
def is_image(self):
return (
self.modality == Modality.IMAGE or self.modality == Modality.MULTI_IMAGES
) and not MultimodalDataItem.is_empty_list(self.pixel_values)
def is_video(self):
return (
self.modality == Modality.VIDEO
) and not MultimodalDataItem.is_empty_list(self.pixel_values)
def validate(self):
...
# TODO
@dataclasses.dataclass
class MultimodalInputs:
"""The multimodal data related inputs."""
# items of data
mm_items: List[MultimodalDataItem]
image_pad_len: Optional[list] = None
pad_values: Optional[list] = None
modalities: Optional[list] = None
num_image_tokens: Optional[int] = None
# Llava related
aspect_ratio_ids: Optional[List[torch.Tensor]] = None
aspect_ratio_mask: Optional[List[torch.Tensor]] = None
# QWen2-VL related
# [num_of_images, t, h, w]
image_grid_thws: torch.Tensor = None
mrope_position_delta: Optional[torch.Tensor] = None
# Qwen2-VL video related
video_token_id: Optional[int] = None
video_grid_thws: List[Tuple[int, int, int]] = None
second_per_grid_ts: Optional[List[torch.Tensor]] = None
# deepseek vl2 related
images_emb_mask: Optional[List[torch.Tensor]] = None
image_spatial_crop: Optional[List[torch.Tensor]] = None
# The id of the single-image placeholder token
# image
im_token_id: Optional[torch.Tensor] = None
# All the images in the batch should share the same special image
# bound token ids.
im_start_id: Optional[int] = None
im_end_id: Optional[int] = None
slice_start_id: Optional[int] = None
slice_end_id: Optional[int] = None
# [num_images, 2 (w, h)]
tgt_sizes: Optional[list] = None
# video
video_token_id: Optional[int] = None
# audio
audio_start_id: Optional[torch.Tensor] = None
audio_end_id: Optional[torch.Tensor] = None
audio_features: Optional[List[torch.Tensor]] = None
audio_feature_lens: Optional[List[torch.Tensor]] = None
@staticmethod
def from_dict(obj: dict):
ret = MultimodalInputs(
pixel_values=obj["pixel_values"],
data_hashes=obj["data_hashes"],
mm_items=obj["mm_items"],
)
assert isinstance(ret.mm_items, list)
ret.mm_items = [
item
for item in ret.mm_items
if item.is_audio() or item.is_image() or item.is_video()
]
assert len(ret.mm_items) != 0
# Use image hash as fake token_ids. We use this as the key for prefix matching in the radix cache.
# Please note that if the `input_ids` is later used in the model forward,
# you also need to clamp the values within the range of [0, vocab_size) to avoid out-of-bound
# errors in cuda kernels. See also llava.py for example.
ret.pad_values = [x % (1 << 30) for x in ret.data_hashes]
for item in ret.mm_items:
item.set_pad_value()
optional_args = [
"image_sizes",
"modalities",
"aspect_ratio_ids",
"aspect_ratio_mask",
"image_grid_thws",
"images_emb_mask",
"image_spatial_crop",
"im_token_id",
"im_start_id",
"im_end_id",
"slice_start_id",
"slice_end_id",
"tgt_sizes",
"audio_start_id",
"audio_end_id",
"audio_features",
"audio_feature_lens",
]
for arg in optional_args:
if arg in obj:
setattr(ret, arg, obj[arg])
# validate
assert (
isinstance(ret.pixel_values, torch.Tensor)
or isinstance(ret.pixel_values, np.ndarray)
or isinstance(ret.pixel_values, list)
)
assert ret.audio_features is None or isinstance(ret.audio_features, list)
return ret
def contains_image_inputs(self) -> bool:
""" """
return self.pixel_values is not None and self.pixel_values != []
return any(item.is_image() for item in self.mm_items)
def contains_audio_inputs(self) -> bool:
""" """
return self.audio_features is not None and self.audio_features != []
return any(item.is_audio() for item in self.mm_items)
def collect_image_inputs(self) -> List[torch.Tensor]:
return [item.pixel_values for item in self.mm_items if item.is_image()]
def merge(self, other: MultimodalInputs):
"""
merge image inputs when requests are being merged
"""
if isinstance(self.pixel_values, list):
# in some rare cases, pixel values are list of patches with different shapes
# e.g. minicpm
self.pixel_values += other.pixel_values
else:
assert (
self.pixel_values.shape[1:] == other.pixel_values.shape[1:]
), f"{self.pixel_values.shape[1:]} vs {other.pixel_values.shape[1:]}"
self.pixel_values = np.concatenate([self.pixel_values, other.pixel_values])
# args would be stacked along first dim
# usually these are already tensors
stack_args = [
# TODO: merge with image_grid_thws, basically the same thing
"tgt_sizes",
"image_spatial_crop",
]
for arg in stack_args:
if getattr(self, arg, None) is None:
setattr(self, arg, getattr(other, arg, None))
elif getattr(other, arg, None) is not None:
# self and other both not None
setattr(
self,
arg,
torch.cat([getattr(self, arg), getattr(other, arg)], dim=0),
)
if self.image_grid_thws is None:
self.image_grid_thws = other.image_grid_thws
elif other.image_grid_thws is not None:
self.image_grid_thws = torch.concat(
[self.image_grid_thws, other.image_grid_thws]
)
# Use image hash as fake token_ids. We use this as the key for prefix matching in the radix cache.
# Please note that if the `input_ids` is later used in the model forward,
# you also need to clamp the values within the range of [0, vocab_size) to avoid out-of-bound
# errors in cuda kernels. See also llava.py for example.
self.data_hashes += other.data_hashes
self.pad_values = [x % (1 << 30) for x in self.data_hashes]
# args needed to be merged
optional_args = [
"audio_features",
"image_sizes",
"items",
"image_offsets",
"image_pad_len",
# "modalities", # modalities should be ["multi-images"] (one entry) even for multiple images
"aspect_ratio_ids",
"aspect_ratio_mask",
"images_emb_mask",
]
for arg in optional_args:
self_arg = getattr(self, arg, None)
......
......@@ -112,7 +112,7 @@ from sglang.srt.mem_cache.chunk_cache import ChunkCache
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
from sglang.srt.mem_cache.radix_cache import RadixCache
from sglang.srt.metrics.collector import SchedulerMetricsCollector, SchedulerStats
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
from sglang.srt.model_executor.forward_batch_info import ForwardMode
from sglang.srt.server_args import PortArgs, ServerArgs
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
......
import json
import logging
import time
from collections import defaultdict
from http import HTTPStatus
from typing import Dict, List, Optional, Tuple
import torch
from typing import Optional
from sglang.srt.managers.schedule_batch import FINISH_ABORT, Req
......
......@@ -355,11 +355,6 @@ class ForwardBatch:
for mm_input in valid_inputs[1:]:
merged.merge(mm_input)
if isinstance(merged.pixel_values, np.ndarray):
merged.pixel_values = torch.from_numpy(merged.pixel_values)
if isinstance(merged.audio_features, np.ndarray):
merged.audio_features = torch.from_numpy(merged.audio_features)
return merged
def contains_image_inputs(self) -> bool:
......
......@@ -251,17 +251,16 @@ class ModelRunner:
self.init_double_sparsity_channel_config(server_args.ds_heavy_channel_type)
if self.is_multimodal:
self.mem_fraction_static *= 0.95
self.mem_fraction_static *= 0.90
logger.info(
f"Automatically reduce --mem-fraction-static to {self.mem_fraction_static:.3f} "
f"because this is a multimodal model."
)
if self.model_config.hf_config.architectures == [
"MllamaForConditionalGeneration"
]:
logger.info("Automatically turn off --chunked-prefill-size for mllama.")
server_args.chunked_prefill_size = -1
logger.info(
"Automatically turn off --chunked-prefill-size for multimodal model."
)
server_args.chunked_prefill_size = -1
if self.model_config.hf_config.architectures == [
"Qwen2VLForConditionalGeneration"
......@@ -269,18 +268,7 @@ class ModelRunner:
"Qwen2_5_VLForConditionalGeneration"
]:
# TODO: qwen2-vl series does not support radix cache now, set disable_radix_cache=True automatically
logger.info(
"Automatically turn off --chunked-prefill-size and disable radix cache for qwen-vl series."
)
server_args.chunked_prefill_size = -1
server_args.disable_radix_cache = True
if self.model_config.hf_config.architectures == ["DeepseekVL2ForCausalLM"]:
# TODO: deepseek-vl2 does not support radix cache now, set disable_radix_cache=True automatically
logger.info(
"Automatically turn off --chunked-prefill-size and disable radix cache for deepseek-vl2."
)
server_args.chunked_prefill_size = -1
logger.info("Automatically disable radix cache for qwen-vl series.")
server_args.disable_radix_cache = True
if server_args.enable_deepep_moe:
......
......@@ -17,7 +17,7 @@ from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.managers.schedule_batch import MultimodalInputs
from sglang.srt.model_executor.model_runner import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.utils import add_prefix
from sglang.srt.utils import add_prefix, flatten_nested_list
class CLIPVisionEmbeddings(nn.Module):
......@@ -368,7 +368,6 @@ class CLIPVisionTransformer(nn.Module):
self,
pixel_values: torch.Tensor,
) -> torch.Tensor:
hidden_states = self.embeddings(pixel_values.to(self.device))
hidden_states = self.pre_layrnorm(hidden_states)
......@@ -456,12 +455,18 @@ class CLIPModel(nn.Module):
get_embedding: bool = True,
):
assert get_embedding, "CLIPEmbeddingModel is only used for embedding"
image_inputs = None
mm_inputs = []
if forward_batch.mm_inputs is not None:
image_inputs = forward_batch.mm_inputs
if image_inputs is not None and image_inputs[0] is not None:
vision_outputs = self.vision_model(image_inputs[0].pixel_values)
mm_inputs = forward_batch.mm_inputs
pixel_values_list = [
item.pixel_values
for item in flatten_nested_list(
[mm_input.mm_items for mm_input in mm_inputs if mm_input is not None]
)
]
if len(pixel_values_list) != 0:
pixel_values = torch.concat(pixel_values_list)
vision_outputs = self.vision_model(pixel_values)
pooled_output = vision_outputs[:, 0, :]
image_embeds = self.visual_projection(pooled_output)
image_embeds = nn.functional.normalize(image_embeds, p=2, dim=1)
......
......@@ -51,7 +51,7 @@ from sglang.srt.managers.mm_utils import (
MultiModalityDataPaddingPatternTokenPairs,
general_mm_embed_routine,
)
from sglang.srt.managers.schedule_batch import MultimodalInputs, global_server_args_dict
from sglang.srt.managers.schedule_batch import MultimodalDataItem, MultimodalInputs
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.llama import LlamaForCausalLM
......@@ -1959,8 +1959,8 @@ class MultiModalityCausalLM(MultiModalityPreTrainedModel):
)
self.logits_processor = LogitsProcessor(config)
def get_image_feature(self, image_input: MultimodalInputs) -> torch.Tensor:
pixel_values = image_input.pixel_values
def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
pixel_values = torch.concat([item.pixel_values for item in items], dim=0)
bs, n = pixel_values.shape[0:2]
pixel_values = pixel_values.to(
device=self.vision_model.device, dtype=self.vision_model.dtype
......@@ -1976,7 +1976,7 @@ class MultiModalityCausalLM(MultiModalityPreTrainedModel):
return images_embeds
def get_input_embeddings(self) -> nn.Embedding:
return self.language_model.model.embed_tokens
return self.language_model.get_input_embeddings()
@torch.no_grad()
def forward(
......@@ -1984,23 +1984,18 @@ class MultiModalityCausalLM(MultiModalityPreTrainedModel):
input_ids: torch.LongTensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
get_embedding: bool = False,
) -> torch.Tensor:
inputs_embeds = general_mm_embed_routine(
hidden_states = general_mm_embed_routine(
input_ids=input_ids,
forward_batch=forward_batch,
embed_tokens=self.get_input_embeddings(),
mm_data_embedding_func=self.get_image_feature,
)
return self.language_model(
input_ids=None,
image_data_embedding_func=self.get_image_feature,
language_model=self.language_model,
positions=positions,
forward_batch=forward_batch,
input_embeds=inputs_embeds,
get_embedding=False,
)
return hidden_states
def prepare_gen_img_embeds(self, image_ids: torch.LongTensor):
return self.gen_aligner(self.gen_embed(image_ids))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment