Unverified Commit 5641a094 authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Revert "[Model] Support `ArcticForCausalLM` architecture...

Revert "[Model] Support `ArcticForCausalLM` architecture (Snowflake/snowflake-arctic-instruct)" (#5754)
parent 3dd3538c
...@@ -28,7 +28,6 @@ python3 -m sglang.launch_server \ ...@@ -28,7 +28,6 @@ python3 -m sglang.launch_server \
| **Command-R** (Cohere) | `CohereForAI/c4ai-command-r-v01` | Cohere’s open conversational LLM (Command series) optimized for long context, retrieval-augmented generation, and tool use. | | **Command-R** (Cohere) | `CohereForAI/c4ai-command-r-v01` | Cohere’s open conversational LLM (Command series) optimized for long context, retrieval-augmented generation, and tool use. |
| **DBRX** (Databricks) | `databricks/dbrx-instruct` | Databricks’ 132B-parameter MoE model (36B active) trained on 12T tokens; competes with GPT-3.5 quality as a fully open foundation model. | | **DBRX** (Databricks) | `databricks/dbrx-instruct` | Databricks’ 132B-parameter MoE model (36B active) trained on 12T tokens; competes with GPT-3.5 quality as a fully open foundation model. |
| **Grok** (xAI) | `xai-org/grok-1` | xAI’s grok-1 model known for vast size(314B parameters) and high quality; integrated in SGLang for high-performance inference. | | **Grok** (xAI) | `xai-org/grok-1` | xAI’s grok-1 model known for vast size(314B parameters) and high quality; integrated in SGLang for high-performance inference. |
| **Arctic** (Snowflake) | `Snowflake/snowflake-arctic-instruct` | Snowflake’s dense-MoE model (17B active, 480B total) with top-2 routing, built for enterprise-grade reasoning, code, and instruction tasks. |
| **ChatGLM** (GLM-130B family) | `THUDM/chatglm2-6b` | Zhipu AI’s bilingual chat model (6B) excelling at Chinese-English dialogue; fine-tuned for conversational quality and alignment. | | **ChatGLM** (GLM-130B family) | `THUDM/chatglm2-6b` | Zhipu AI’s bilingual chat model (6B) excelling at Chinese-English dialogue; fine-tuned for conversational quality and alignment. |
| **InternLM 2** (7B, 20B) | `internlm/internlm2-7b` | Next-gen InternLM (7B and 20B) from SenseTime, offering strong reasoning and ultra-long context support (up to 200K tokens). | | **InternLM 2** (7B, 20B) | `internlm/internlm2-7b` | Next-gen InternLM (7B and 20B) from SenseTime, offering strong reasoning and ultra-long context support (up to 200K tokens). |
| **ExaONE 3** (Korean-English) | `LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct` | LG AI Research’s Korean-English model (7.8B) trained on 8T tokens; provides high-quality bilingual understanding and generation. | | **ExaONE 3** (Korean-English) | `LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct` | LG AI Research’s Korean-English model (7.8B) trained on 8T tokens; provides high-quality bilingual understanding and generation. |
......
from sglang.srt.configs.arctic import ArcticConfig
from sglang.srt.configs.chatglm import ChatGLMConfig from sglang.srt.configs.chatglm import ChatGLMConfig
from sglang.srt.configs.dbrx import DbrxConfig from sglang.srt.configs.dbrx import DbrxConfig
from sglang.srt.configs.deepseekvl2 import DeepseekVL2Config from sglang.srt.configs.deepseekvl2 import DeepseekVL2Config
...@@ -6,7 +5,6 @@ from sglang.srt.configs.exaone import ExaoneConfig ...@@ -6,7 +5,6 @@ from sglang.srt.configs.exaone import ExaoneConfig
from sglang.srt.configs.janus_pro import MultiModalityConfig from sglang.srt.configs.janus_pro import MultiModalityConfig
__all__ = [ __all__ = [
"ArcticConfig",
"ExaoneConfig", "ExaoneConfig",
"ChatGLMConfig", "ChatGLMConfig",
"DbrxConfig", "DbrxConfig",
......
# SPDX-License-Identifier: Apache-2.0
"""Arctic model configuration"""
from typing import Any, Dict, Optional
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
ARCTIC_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"arctic": "https://huggingface.co/Snowflake/snowflake-arctic-instruct/tree/main/config.json",
}
class ArcticConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ArcticModel`]. It is used to instantiate an
Arctic model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Arctic model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ArcticModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
pad_token_id (`int`, *optional*):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
sliding_window (`int`, *optional*):
Sliding window attention window size. If not specified, will default to `4096`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
num_experts_per_tok (`int`, *optional*, defaults to 2):
The number of experts to root per-token, can be also interpreted as the `top-p` routing parameter
num_local_experts (`int`, *optional*, defaults to 8):
Number of experts per Sparse MLP layer.
moe_layer_frequency (`int`, *optional*, defaults to 2):
Frequency of MoE layers in the model.
"""
model_type = "arctic"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=14336,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
hidden_act="silu",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=1e6,
sliding_window=None,
attention_dropout=0.0,
num_experts_per_tok=1,
num_local_experts=8,
moe_layer_frequency=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.sliding_window = sliding_window
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.num_experts_per_tok = num_experts_per_tok
self.num_local_experts = num_local_experts
self.moe_layer_frequency = moe_layer_frequency
# For backward compatibility
self._attn_implementation = kwargs.pop("_attn_implementation", "eager")
self.use_residual = kwargs.pop("use_residual", True)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
...@@ -31,7 +31,6 @@ from transformers import ( ...@@ -31,7 +31,6 @@ from transformers import (
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from sglang.srt.configs import ( from sglang.srt.configs import (
ArcticConfig,
ChatGLMConfig, ChatGLMConfig,
DbrxConfig, DbrxConfig,
DeepseekVL2Config, DeepseekVL2Config,
...@@ -42,7 +41,6 @@ from sglang.srt.connector import create_remote_connector ...@@ -42,7 +41,6 @@ from sglang.srt.connector import create_remote_connector
from sglang.srt.utils import is_remote_url from sglang.srt.utils import is_remote_url
_CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = { _CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
ArcticConfig.model_type: ArcticConfig,
ChatGLMConfig.model_type: ChatGLMConfig, ChatGLMConfig.model_type: ChatGLMConfig,
DbrxConfig.model_type: DbrxConfig, DbrxConfig.model_type: DbrxConfig,
ExaoneConfig.model_type: ExaoneConfig, ExaoneConfig.model_type: ExaoneConfig,
......
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment