Unverified Commit 56222658 authored by yinghui's avatar yinghui Committed by GitHub
Browse files

move eagle draft post process to cuda graph (#11434)


Co-authored-by: default avatarLianmin Zheng <lianminzheng@gmail.com>
parent dc965db0
# NOTE: Please run this file to make sure the test cases are correct.
import math
from enum import IntEnum
from typing import List, Optional
import torch
from sglang.srt.utils import is_cuda, is_hip
if is_cuda() or is_hip():
from sgl_kernel import (
build_tree_kernel_efficient as sgl_build_tree_kernel_efficient,
)
def build_tree_kernel_efficient_preprocess(
verified_id: torch.Tensor,
score_list: List[torch.Tensor],
token_list: List[torch.Tensor],
parents_list: List[torch.Tensor],
num_verify_tokens: int,
):
score_list = torch.cat(score_list, dim=1).flatten(
1
) # b, n, topk; n= 1 + (num_steps-1) * self.topk
ss_token_list = torch.cat(
token_list, dim=1
) # b, (self.topk + (num_steps-1) * self.topk)
top_scores = torch.topk(score_list, num_verify_tokens - 1, dim=-1)
top_scores_index = top_scores.indices
top_scores_index = torch.sort(top_scores_index).values
draft_tokens = torch.gather(ss_token_list, index=top_scores_index, dim=1)
draft_tokens = torch.cat((verified_id.unsqueeze(1), draft_tokens), dim=1).flatten()
if len(parents_list) > 1:
parent_list = torch.cat(parents_list[:-1], dim=1)
else:
batch_size = parents_list[0].shape[0]
parent_list = torch.empty(batch_size, 0, device=parents_list[0].device)
return parent_list, top_scores_index, draft_tokens
class TreeMaskMode(IntEnum):
FULL_MASK = 0
QLEN_ONLY = 1
QLEN_ONLY_BITPACKING = 2
def build_tree_kernel_efficient(
verified_id: torch.Tensor,
score_list: List[torch.Tensor],
token_list: List[torch.Tensor],
parents_list: List[torch.Tensor],
seq_lens: torch.Tensor,
seq_lens_sum: int,
topk: int,
spec_steps: int,
num_verify_tokens: int,
tree_mask_mode: TreeMaskMode = TreeMaskMode.FULL_MASK,
tree_mask_buf: Optional[torch.Tensor] = None,
position_buf: Optional[torch.Tensor] = None,
):
parent_list, top_scores_index, draft_tokens = (
build_tree_kernel_efficient_preprocess(
verified_id,
score_list,
token_list,
parents_list,
num_verify_tokens,
)
)
# seq_lens_sum == sum(seq_lens); seq_lens: sequence length without draft tokens
bs = seq_lens.numel()
device = seq_lens.device
# e.g. for bs=1, tree_mask: num_draft_token, seq_lens_sum + num_draft_token (flattened)
# where each row indicates the attending pattern of each draft token
# if use_partial_packed_tree_mask is True, tree_mask: num_draft_token (flattened, packed)
if tree_mask_buf is not None:
tree_mask = tree_mask_buf
elif tree_mask_mode == TreeMaskMode.QLEN_ONLY:
tree_mask = torch.full(
(num_verify_tokens * bs * num_verify_tokens,),
True,
dtype=torch.bool,
device=device,
)
elif tree_mask_mode == TreeMaskMode.QLEN_ONLY_BITPACKING:
packed_dtypes = [torch.uint8, torch.uint16, torch.uint32]
packed_dtype_idx = int(math.ceil(math.log2((num_verify_tokens + 7) // 8)))
tree_mask = torch.zeros(
(num_verify_tokens * bs,),
dtype=packed_dtypes[packed_dtype_idx],
device=device,
)
elif tree_mask_mode == TreeMaskMode.FULL_MASK:
tree_mask = torch.full(
(
seq_lens_sum * num_verify_tokens
+ num_verify_tokens * num_verify_tokens * bs,
),
True,
device=device,
)
else:
raise NotImplementedError(f"Invalid tree mask: {tree_mask_mode=}")
# TODO: make them torch.empty and fuse them into `sgl_build_tree_kernel`
retrive_index = torch.full(
(bs, num_verify_tokens), -1, device=device, dtype=torch.long
)
retrive_next_token = torch.full(
(bs, num_verify_tokens), -1, device=device, dtype=torch.long
)
retrive_next_sibling = torch.full(
(bs, num_verify_tokens), -1, device=device, dtype=torch.long
)
# position: where each token belongs to
# e.g. if depth of each draft token is [0, 1, 1, 2] and the prompt length is 7
# then, positions = [7, 8, 8, 9]
if position_buf is not None:
positions = position_buf
else:
positions = torch.empty(
(bs * num_verify_tokens,), device=device, dtype=torch.long
)
sgl_build_tree_kernel_efficient(
parent_list,
top_scores_index,
seq_lens,
tree_mask,
positions,
retrive_index,
retrive_next_token,
retrive_next_sibling,
topk,
spec_steps,
num_verify_tokens,
tree_mask_mode,
)
return (
tree_mask,
positions,
retrive_index,
retrive_next_token,
retrive_next_sibling,
draft_tokens,
)
def test_build_tree_kernel_efficient():
verified_id = torch.tensor([29974, 13], device="cuda", dtype=torch.int32)
score_list = [
torch.tensor(
[
[[7.1127e-01, 2.8292e-01, 2.2995e-03, 1.7357e-03]],
[[9.7476e-01, 2.2219e-02, 6.5031e-04, 1.3212e-04]],
],
dtype=torch.float32,
device="cuda",
),
torch.tensor(
[
[
[6.9142e-01, 1.2863e-02, 1.6873e-03, 1.1871e-03],
[2.4787e-01, 1.8818e-02, 1.4204e-02, 9.2235e-04],
[2.2971e-03, 1.6700e-06, 1.8737e-07, 8.3146e-08],
[1.2771e-03, 2.4374e-04, 1.7832e-04, 1.1947e-05],
],
[
[8.4832e-02, 6.6068e-02, 5.8304e-02, 5.7851e-02],
[2.3616e-03, 1.1243e-03, 5.4368e-04, 2.7768e-04],
[2.5286e-04, 1.5578e-04, 2.8817e-05, 1.2888e-05],
[1.2834e-04, 2.5417e-06, 1.1279e-06, 1.6088e-08],
],
],
dtype=torch.float32,
device="cuda",
),
torch.tensor(
[
[
[6.6438e-01, 2.6997e-02, 2.4236e-05, 4.0821e-06],
[2.4402e-01, 2.8409e-03, 5.0935e-04, 2.9022e-04],
[1.6178e-02, 2.0567e-03, 4.5892e-04, 3.0034e-05],
[1.3023e-02, 5.0497e-04, 3.6371e-04, 8.7750e-05],
],
[
[2.3263e-02, 2.0054e-02, 9.3990e-03, 2.7783e-03],
[6.4156e-02, 5.5506e-04, 1.0429e-04, 9.7211e-05],
[4.9950e-02, 5.0630e-03, 9.0068e-04, 3.3656e-04],
[7.5817e-03, 8.5731e-04, 6.9972e-04, 6.0793e-04],
],
],
dtype=torch.float32,
device="cuda",
),
torch.tensor(
[
[
[6.6420e-01, 1.0525e-04, 6.5864e-05, 1.2253e-06],
[1.3019e-01, 1.0461e-01, 5.2083e-03, 1.6777e-03],
[2.0103e-02, 6.7335e-03, 1.2625e-04, 1.0364e-05],
[1.5142e-02, 7.0819e-04, 9.6595e-05, 8.7951e-05],
],
[
[5.8608e-02, 1.8840e-03, 7.8535e-04, 4.4400e-04],
[1.2185e-02, 2.0684e-03, 1.7418e-03, 1.4327e-03],
[6.2455e-03, 6.1487e-03, 2.6862e-03, 1.8034e-03],
[1.8590e-03, 1.6151e-03, 1.2481e-03, 3.6038e-04],
],
],
dtype=torch.float32,
device="cuda",
),
]
token_list = [
torch.tensor(
[[29896, 29906, 29900, 29945], [13, 2, 29871, 28956]],
dtype=torch.int64,
device="cuda",
),
torch.tensor(
[
[
29889,
29974,
29945,
29900,
29974,
29922,
29930,
29958,
29889,
29974,
29930,
29945,
29974,
29922,
29930,
29958,
],
[
22550,
4136,
16492,
8439,
29871,
2,
3001,
13,
2,
13,
29906,
29946,
2,
13,
29871,
259,
],
],
device="cuda",
),
torch.tensor(
[
[
29946,
29945,
29953,
29906,
29896,
29945,
29900,
29906,
29896,
29945,
29906,
29953,
29896,
29945,
29906,
29946,
],
[
29871,
2,
29901,
29889,
29871,
2,
395,
259,
29901,
29871,
2,
29889,
3001,
1234,
7146,
2186,
],
],
device="cuda",
),
torch.tensor(
[
[
29946,
29974,
29945,
29930,
29889,
29922,
29974,
29930,
29974,
29946,
29930,
29922,
29889,
29974,
29945,
29922,
],
[
29941,
29906,
2,
29946,
29871,
450,
319,
14990,
29946,
29941,
2,
29906,
29871,
2,
3001,
13,
],
],
device="cuda",
),
]
parents_list = [
torch.tensor(
[[-1, 0, 1, 2, 3], [-1, 0, 1, 2, 3]], dtype=torch.int64, device="cuda"
),
torch.tensor([[4, 8, 9, 10], [4, 5, 6, 7]], dtype=torch.int64, device="cuda"),
torch.tensor(
[[20, 24, 21, 28], [24, 28, 20, 21]], dtype=torch.int64, device="cuda"
),
torch.tensor(
[[36, 40, 41, 44], [36, 40, 44, 45]], dtype=torch.int64, device="cuda"
),
]
seq_lens = torch.tensor([5, 10], dtype=torch.int64, device="cuda")
topk = 4
depth = 4
num_draft_token = 8
(
tree_mask,
position,
retrive_index,
retrive_next_token,
retrive_next_sibling,
draft_tokens,
) = build_tree_kernel_efficient(
verified_id=verified_id,
score_list=score_list,
token_list=token_list,
parents_list=parents_list,
seq_lens=seq_lens,
seq_lens_sum=torch.sum(seq_lens).item(),
topk=topk,
spec_steps=depth,
num_verify_tokens=num_draft_token,
)
print("=========== build tree kernel efficient ==========")
print(f"{tree_mask=}")
print(f"{position=}")
print(f"{retrive_index=}")
print(f"{retrive_next_token=}")
print(f"{retrive_next_sibling=}")
print(f"{draft_tokens=}")
assert position.tolist() == [5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 12, 12, 13, 14]
assert retrive_index.tolist() == [
[0, 1, 2, 3, 4, 5, 6, 7],
[8, 9, 10, 11, 12, 13, 14, 15],
]
assert retrive_next_token.tolist() == [
[1, 3, 4, 5, 6, 7, -1, -1],
[1, 2, -1, 6, -1, -1, 7, -1],
]
assert retrive_next_sibling.tolist() == [
[-1, 2, -1, -1, -1, -1, -1, -1],
[-1, -1, 3, 4, 5, -1, -1, -1],
]
assert draft_tokens.tolist() == [
29974,
29896,
29906,
29889,
29974,
29946,
29896,
29946,
13,
13,
22550,
4136,
16492,
8439,
29871,
29941,
]
if __name__ == "__main__":
test_build_tree_kernel_efficient()
...@@ -276,11 +276,9 @@ class EAGLEDraftCudaGraphRunner: ...@@ -276,11 +276,9 @@ class EAGLEDraftCudaGraphRunner:
return graph, out return graph, out
def _postprocess_output_to_raw_bs(self, out, raw_bs): def _postprocess_output_to_raw_bs(self, out, raw_bs):
score_list, token_list, parents_list = out # Keep the variables name for readability
score_list = [x[:raw_bs] for x in score_list] parent_list, top_scores_index, draft_tokens = (t[:raw_bs] for t in out)
token_list = [x[:raw_bs] for x in token_list] return parent_list, top_scores_index, draft_tokens
parents_list = [x[:raw_bs] for x in parents_list]
return (score_list, token_list, parents_list)
def replay(self, forward_batch: ForwardBatch): def replay(self, forward_batch: ForwardBatch):
assert forward_batch.out_cache_loc is not None assert forward_batch.out_cache_loc is not None
......
from __future__ import annotations from __future__ import annotations
import math
from dataclasses import dataclass from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, List, Optional from typing import TYPE_CHECKING, Any
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
...@@ -19,7 +18,6 @@ from sglang.srt.model_executor.forward_batch_info import ( ...@@ -19,7 +18,6 @@ from sglang.srt.model_executor.forward_batch_info import (
) )
from sglang.srt.model_executor.model_runner import ModelRunner from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.server_args import get_global_server_args from sglang.srt.server_args import get_global_server_args
from sglang.srt.speculative.build_eagle_tree import TreeMaskMode
from sglang.srt.speculative.spec_utils import ( from sglang.srt.speculative.spec_utils import (
SIMULATE_ACC_LEN, SIMULATE_ACC_LEN,
generate_simulated_accept_index, generate_simulated_accept_index,
...@@ -286,110 +284,6 @@ class EagleVerifyInputV2Mixin: ...@@ -286,110 +284,6 @@ class EagleVerifyInputV2Mixin:
return predict, accept_length, accept_index return predict, accept_length, accept_index
def build_tree_kernel_efficient_tmp(
verified_id: torch.Tensor,
parent_list: List[torch.Tensor],
top_scores_index: torch.Tensor,
draft_tokens: torch.Tensor,
seq_lens: torch.Tensor,
seq_lens_sum: int,
topk: int,
spec_steps: int,
num_verify_tokens: int,
tree_mask_mode: TreeMaskMode = TreeMaskMode.FULL_MASK,
tree_mask_buf: Optional[torch.Tensor] = None,
position_buf: Optional[torch.Tensor] = None,
):
# TODO(lsyin): make it compatible with default code path
# TODO(lsyin): support cuda graph graph padding for eagle
draft_tokens = torch.cat((verified_id.unsqueeze(1), draft_tokens), dim=1).flatten()
# seq_lens_sum == sum(seq_lens); seq_lens: sequence length without draft tokens
bs = seq_lens.numel()
device = seq_lens.device
# e.g. for bs=1, tree_mask: num_draft_token, seq_lens_sum + num_draft_token (flattened)
# where each row indicates the attending pattern of each draft token
# if use_partial_packed_tree_mask is True, tree_mask: num_draft_token (flattened, packed)
if tree_mask_buf is not None:
tree_mask = tree_mask_buf
if tree_mask_mode == TreeMaskMode.QLEN_ONLY:
tree_mask.fill_(True)
elif tree_mask_mode == TreeMaskMode.QLEN_ONLY_BITPACKING:
tree_mask.fill_(0)
elif tree_mask_mode == TreeMaskMode.FULL_MASK:
tree_mask.fill_(True)
else:
raise NotImplementedError(f"Invalid tree mask: {tree_mask_mode=}")
elif tree_mask_mode == TreeMaskMode.QLEN_ONLY:
tree_mask = torch.full(
(num_verify_tokens * bs * num_verify_tokens,),
True,
dtype=torch.bool,
device=device,
)
elif tree_mask_mode == TreeMaskMode.QLEN_ONLY_BITPACKING:
packed_dtypes = [torch.uint8, torch.uint16, torch.uint32]
packed_dtype_idx = int(math.ceil(math.log2((num_verify_tokens + 7) // 8)))
tree_mask = torch.zeros(
(num_verify_tokens * bs,),
dtype=packed_dtypes[packed_dtype_idx],
device=device,
)
elif tree_mask_mode == TreeMaskMode.FULL_MASK:
tree_mask = torch.full(
(
seq_lens_sum * num_verify_tokens
+ num_verify_tokens * num_verify_tokens * bs,
),
True,
device=device,
)
else:
raise NotImplementedError(f"Invalid tree mask: {tree_mask_mode=}")
# TODO: make them torch.empty and fuse them into `sgl_build_tree_kernel`
retrive_buf = torch.full(
(3, bs, num_verify_tokens), -1, device=device, dtype=torch.long
)
retrive_index, retrive_next_token, retrive_next_sibling = retrive_buf
# position: where each token belongs to
# e.g. if depth of each draft token is [0, 1, 1, 2] and the prompt length is 7
# then, positions = [7, 8, 8, 9]
if position_buf is not None:
positions = position_buf
else:
positions = torch.empty(
(bs * num_verify_tokens,), device=device, dtype=torch.long
)
from sgl_kernel import (
build_tree_kernel_efficient as sgl_build_tree_kernel_efficient,
)
sgl_build_tree_kernel_efficient(
parent_list,
top_scores_index,
seq_lens,
tree_mask,
positions,
retrive_index,
retrive_next_token,
retrive_next_sibling,
topk,
spec_steps,
num_verify_tokens,
tree_mask_mode,
)
return (
tree_mask,
positions,
retrive_index,
retrive_next_token,
retrive_next_sibling,
draft_tokens,
)
@torch.compile(dynamic=True) @torch.compile(dynamic=True)
def select_top_k_tokens_tmp( def select_top_k_tokens_tmp(
i: int, i: int,
......
import math
from enum import IntEnum
from typing import List, Optional
import torch
from sglang.srt.utils import is_cuda, is_hip
if is_cuda() or is_hip():
from sgl_kernel import (
build_tree_kernel_efficient as sgl_build_tree_kernel_efficient,
)
def organize_draft_results(
score_list: List[torch.Tensor],
token_list: List[torch.Tensor],
parents_list: List[torch.Tensor],
num_draft_token: int,
):
score_list = torch.cat(score_list, dim=1).flatten(1)
ss_token_list = torch.cat(token_list, dim=1)
top_scores = torch.topk(score_list, num_draft_token - 1, dim=-1)
top_scores_index = top_scores.indices
top_scores_index = torch.sort(top_scores_index).values
draft_tokens = torch.gather(ss_token_list, index=top_scores_index, dim=1)
if len(parents_list) > 1:
parent_list = torch.cat(parents_list[:-1], dim=1)
else:
batch_size = parents_list[0].shape[0]
parent_list = torch.empty(batch_size, 0, device=parents_list[0].device)
return parent_list, top_scores_index, draft_tokens
class TreeMaskMode(IntEnum):
FULL_MASK = 0
QLEN_ONLY = 1
QLEN_ONLY_BITPACKING = 2
def build_tree_kernel_efficient(
verified_id: torch.Tensor,
parent_list: List[torch.Tensor],
top_scores_index: torch.Tensor,
draft_tokens: torch.Tensor,
seq_lens: torch.Tensor,
seq_lens_sum: int,
topk: int,
spec_steps: int,
num_verify_tokens: int,
tree_mask_mode: TreeMaskMode = TreeMaskMode.FULL_MASK,
tree_mask_buf: Optional[torch.Tensor] = None,
position_buf: Optional[torch.Tensor] = None,
):
draft_tokens = torch.cat((verified_id.unsqueeze(1), draft_tokens), dim=1).flatten()
# seq_lens_sum == sum(seq_lens); seq_lens: sequence length without draft tokens
bs = seq_lens.numel()
device = seq_lens.device
# e.g. for bs=1, tree_mask: num_draft_token, seq_lens_sum + num_draft_token (flattened)
# where each row indicates the attending pattern of each draft token
# if use_partial_packed_tree_mask is True, tree_mask: num_draft_token (flattened, packed)
if tree_mask_buf is not None:
tree_mask = tree_mask_buf
if tree_mask_mode == TreeMaskMode.QLEN_ONLY:
tree_mask.fill_(True)
elif tree_mask_mode == TreeMaskMode.QLEN_ONLY_BITPACKING:
tree_mask.fill_(0)
elif tree_mask_mode == TreeMaskMode.FULL_MASK:
tree_mask.fill_(True)
else:
raise NotImplementedError(f"Invalid tree mask: {tree_mask_mode=}")
elif tree_mask_mode == TreeMaskMode.QLEN_ONLY:
tree_mask = torch.full(
(num_verify_tokens * bs * num_verify_tokens,),
True,
dtype=torch.bool,
device=device,
)
elif tree_mask_mode == TreeMaskMode.QLEN_ONLY_BITPACKING:
packed_dtypes = [torch.uint8, torch.uint16, torch.uint32]
packed_dtype_idx = int(math.ceil(math.log2((num_verify_tokens + 7) // 8)))
tree_mask = torch.zeros(
(num_verify_tokens * bs,),
dtype=packed_dtypes[packed_dtype_idx],
device=device,
)
elif tree_mask_mode == TreeMaskMode.FULL_MASK:
tree_mask = torch.full(
(
seq_lens_sum * num_verify_tokens
+ num_verify_tokens * num_verify_tokens * bs,
),
True,
device=device,
)
else:
raise NotImplementedError(f"Invalid tree mask: {tree_mask_mode=}")
# TODO: make them torch.empty and fuse them into `sgl_build_tree_kernel`
retrive_buf = torch.full(
(3, bs, num_verify_tokens), -1, device=device, dtype=torch.long
)
retrive_index, retrive_next_token, retrive_next_sibling = retrive_buf
# position: where each token belongs to
# e.g. if depth of each draft token is [0, 1, 1, 2] and the prompt length is 7
# then, positions = [7, 8, 8, 9]
if position_buf is not None:
positions = position_buf
else:
positions = torch.empty(
(bs * num_verify_tokens,), device=device, dtype=torch.long
)
sgl_build_tree_kernel_efficient(
parent_list,
top_scores_index,
seq_lens,
tree_mask,
positions,
retrive_index,
retrive_next_token,
retrive_next_sibling,
topk,
spec_steps,
num_verify_tokens,
tree_mask_mode,
)
return (
tree_mask,
positions,
retrive_index,
retrive_next_token,
retrive_next_sibling,
draft_tokens,
)
...@@ -28,7 +28,6 @@ from sglang.srt.model_executor.forward_batch_info import ( ...@@ -28,7 +28,6 @@ from sglang.srt.model_executor.forward_batch_info import (
ForwardMode, ForwardMode,
) )
from sglang.srt.server_args import ServerArgs, get_global_server_args from sglang.srt.server_args import ServerArgs, get_global_server_args
from sglang.srt.speculative.build_eagle_tree import build_tree_kernel_efficient
from sglang.srt.speculative.eagle_draft_cuda_graph_runner import ( from sglang.srt.speculative.eagle_draft_cuda_graph_runner import (
EAGLEDraftCudaGraphRunner, EAGLEDraftCudaGraphRunner,
) )
...@@ -40,6 +39,10 @@ from sglang.srt.speculative.eagle_info import ( ...@@ -40,6 +39,10 @@ from sglang.srt.speculative.eagle_info import (
EagleVerifyInput, EagleVerifyInput,
EagleVerifyOutput, EagleVerifyOutput,
) )
from sglang.srt.speculative.eagle_utils import (
build_tree_kernel_efficient,
organize_draft_results,
)
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
from sglang.srt.speculative.spec_utils import ( from sglang.srt.speculative.spec_utils import (
assign_draft_cache_locs, assign_draft_cache_locs,
...@@ -677,7 +680,7 @@ class EAGLEWorker(TpModelWorker): ...@@ -677,7 +680,7 @@ class EAGLEWorker(TpModelWorker):
forward_batch forward_batch
) )
if can_cuda_graph: if can_cuda_graph:
score_list, token_list, parents_list = self.cuda_graph_runner.replay( parent_list, top_scores_index, draft_tokens = self.cuda_graph_runner.replay(
forward_batch forward_batch
) )
else: else:
...@@ -686,7 +689,9 @@ class EAGLEWorker(TpModelWorker): ...@@ -686,7 +689,9 @@ class EAGLEWorker(TpModelWorker):
# Initialize attention backend # Initialize attention backend
self.draft_attn_backend.init_forward_metadata(forward_batch) self.draft_attn_backend.init_forward_metadata(forward_batch)
# Run forward steps # Run forward steps
score_list, token_list, parents_list = self.draft_forward(forward_batch) parent_list, top_scores_index, draft_tokens = self.draft_forward(
forward_batch
)
if batch.forward_mode.is_idle(): if batch.forward_mode.is_idle():
return EagleVerifyInput.create_idle_input( return EagleVerifyInput.create_idle_input(
...@@ -704,9 +709,9 @@ class EAGLEWorker(TpModelWorker): ...@@ -704,9 +709,9 @@ class EAGLEWorker(TpModelWorker):
draft_tokens, draft_tokens,
) = build_tree_kernel_efficient( ) = build_tree_kernel_efficient(
spec_info.verified_id, spec_info.verified_id,
score_list, parent_list,
token_list, top_scores_index,
parents_list, draft_tokens,
batch.seq_lens, batch.seq_lens,
batch.seq_lens_sum, batch.seq_lens_sum,
self.topk, self.topk,
...@@ -795,7 +800,11 @@ class EAGLEWorker(TpModelWorker): ...@@ -795,7 +800,11 @@ class EAGLEWorker(TpModelWorker):
topk_index = self.hot_token_id[topk_index] topk_index = self.hot_token_id[topk_index]
hidden_states = logits_output.hidden_states hidden_states = logits_output.hidden_states
return score_list, token_list, parents_list parent_list, top_scores_index, draft_tokens = organize_draft_results(
score_list, token_list, parents_list, self.speculative_num_draft_tokens
)
return parent_list, top_scores_index, draft_tokens
def clear_cache_pool(self): def clear_cache_pool(self):
self.model_runner.req_to_token_pool.clear() self.model_runner.req_to_token_pool.clear()
......
...@@ -12,15 +12,14 @@ from sglang.srt.mem_cache.allocator import TokenToKVPoolAllocator ...@@ -12,15 +12,14 @@ from sglang.srt.mem_cache.allocator import TokenToKVPoolAllocator
from sglang.srt.mem_cache.memory_pool import ReqToTokenPool from sglang.srt.mem_cache.memory_pool import ReqToTokenPool
from sglang.srt.model_executor.forward_batch_info import CaptureHiddenMode, ForwardBatch from sglang.srt.model_executor.forward_batch_info import CaptureHiddenMode, ForwardBatch
from sglang.srt.server_args import ServerArgs from sglang.srt.server_args import ServerArgs
from sglang.srt.speculative.build_eagle_tree import TreeMaskMode
from sglang.srt.speculative.eagle_info import EagleDraftInput, EagleVerifyInput from sglang.srt.speculative.eagle_info import EagleDraftInput, EagleVerifyInput
from sglang.srt.speculative.eagle_info_v2 import ( from sglang.srt.speculative.eagle_info_v2 import (
assign_extend_cache_locs, assign_extend_cache_locs,
build_tree_kernel_efficient_tmp,
fill_accepted_out_cache_loc, fill_accepted_out_cache_loc,
fill_new_verified_id, fill_new_verified_id,
select_top_k_tokens_tmp, select_top_k_tokens_tmp,
) )
from sglang.srt.speculative.eagle_utils import TreeMaskMode, build_tree_kernel_efficient
from sglang.srt.speculative.eagle_worker import EAGLEWorker from sglang.srt.speculative.eagle_worker import EAGLEWorker
from sglang.srt.utils.common import fast_topk, next_power_of_2 from sglang.srt.utils.common import fast_topk, next_power_of_2
...@@ -116,7 +115,7 @@ class EAGLEWorkerV2(EAGLEWorker): ...@@ -116,7 +115,7 @@ class EAGLEWorkerV2(EAGLEWorker):
retrive_next_token, retrive_next_token,
retrive_next_sibling, retrive_next_sibling,
draft_tokens, draft_tokens,
) = build_tree_kernel_efficient_tmp( ) = build_tree_kernel_efficient(
draft_input.verified_id, draft_input.verified_id,
parent_list, parent_list,
top_scores_index, top_scores_index,
......
...@@ -69,6 +69,7 @@ suites = { ...@@ -69,6 +69,7 @@ suites = {
TestFile("test_chunked_prefill.py", 313), TestFile("test_chunked_prefill.py", 313),
TestFile("test_create_kvindices.py", 2), TestFile("test_create_kvindices.py", 2),
TestFile("test_deterministic.py", 300), TestFile("test_deterministic.py", 300),
TestFile("test_build_eagle_tree.py", 8),
TestFile("test_eagle_infer_a.py", 370), TestFile("test_eagle_infer_a.py", 370),
TestFile("test_eagle_infer_b.py", 700), TestFile("test_eagle_infer_b.py", 700),
TestFile("test_eagle_infer_beta.py", 300), TestFile("test_eagle_infer_beta.py", 300),
......
import unittest
import torch
from sglang.srt.speculative.eagle_utils import (
build_tree_kernel_efficient,
organize_draft_results,
)
class TestBuildEagleTree(unittest.TestCase):
"""Unit tests for build_eagle_tree functionality."""
def test_build_tree_kernel_efficient(self):
"""Test the build_tree_kernel_efficient function with known inputs and expected outputs."""
verified_id = torch.tensor([29974, 13], device="cuda", dtype=torch.int32)
score_list = [
torch.tensor(
[
[[7.1127e-01, 2.8292e-01, 2.2995e-03, 1.7357e-03]],
[[9.7476e-01, 2.2219e-02, 6.5031e-04, 1.3212e-04]],
],
dtype=torch.float32,
device="cuda",
),
torch.tensor(
[
[
[6.9142e-01, 1.2863e-02, 1.6873e-03, 1.1871e-03],
[2.4787e-01, 1.8818e-02, 1.4204e-02, 9.2235e-04],
[2.2971e-03, 1.6700e-06, 1.8737e-07, 8.3146e-08],
[1.2771e-03, 2.4374e-04, 1.7832e-04, 1.1947e-05],
],
[
[8.4832e-02, 6.6068e-02, 5.8304e-02, 5.7851e-02],
[2.3616e-03, 1.1243e-03, 5.4368e-04, 2.7768e-04],
[2.5286e-04, 1.5578e-04, 2.8817e-05, 1.2888e-05],
[1.2834e-04, 2.5417e-06, 1.1279e-06, 1.6088e-08],
],
],
dtype=torch.float32,
device="cuda",
),
torch.tensor(
[
[
[6.6438e-01, 2.6997e-02, 2.4236e-05, 4.0821e-06],
[2.4402e-01, 2.8409e-03, 5.0935e-04, 2.9022e-04],
[1.6178e-02, 2.0567e-03, 4.5892e-04, 3.0034e-05],
[1.3023e-02, 5.0497e-04, 3.6371e-04, 8.7750e-05],
],
[
[2.3263e-02, 2.0054e-02, 9.3990e-03, 2.7783e-03],
[6.4156e-02, 5.5506e-04, 1.0429e-04, 9.7211e-05],
[4.9950e-02, 5.0630e-03, 9.0068e-04, 3.3656e-04],
[7.5817e-03, 8.5731e-04, 6.9972e-04, 6.0793e-04],
],
],
dtype=torch.float32,
device="cuda",
),
torch.tensor(
[
[
[6.6420e-01, 1.0525e-04, 6.5864e-05, 1.2253e-06],
[1.3019e-01, 1.0461e-01, 5.2083e-03, 1.6777e-03],
[2.0103e-02, 6.7335e-03, 1.2625e-04, 1.0364e-05],
[1.5142e-02, 7.0819e-04, 9.6595e-05, 8.7951e-05],
],
[
[5.8608e-02, 1.8840e-03, 7.8535e-04, 4.4400e-04],
[1.2185e-02, 2.0684e-03, 1.7418e-03, 1.4327e-03],
[6.2455e-03, 6.1487e-03, 2.6862e-03, 1.8034e-03],
[1.8590e-03, 1.6151e-03, 1.2481e-03, 3.6038e-04],
],
],
dtype=torch.float32,
device="cuda",
),
]
token_list = [
torch.tensor(
[[29896, 29906, 29900, 29945], [13, 2, 29871, 28956]],
dtype=torch.int64,
device="cuda",
),
torch.tensor(
[
[
29889,
29974,
29945,
29900,
29974,
29922,
29930,
29958,
29889,
29974,
29930,
29945,
29974,
29922,
29930,
29958,
],
[
22550,
4136,
16492,
8439,
29871,
2,
3001,
13,
2,
13,
29906,
29946,
2,
13,
29871,
259,
],
],
device="cuda",
),
torch.tensor(
[
[
29946,
29945,
29953,
29906,
29896,
29945,
29900,
29906,
29896,
29945,
29906,
29953,
29896,
29945,
29906,
29946,
],
[
29871,
2,
29901,
29889,
29871,
2,
395,
259,
29901,
29871,
2,
29889,
3001,
1234,
7146,
2186,
],
],
device="cuda",
),
torch.tensor(
[
[
29946,
29974,
29945,
29930,
29889,
29922,
29974,
29930,
29974,
29946,
29930,
29922,
29889,
29974,
29945,
29922,
],
[
29941,
29906,
2,
29946,
29871,
450,
319,
14990,
29946,
29941,
2,
29906,
29871,
2,
3001,
13,
],
],
device="cuda",
),
]
parents_list = [
torch.tensor(
[[-1, 0, 1, 2, 3], [-1, 0, 1, 2, 3]], dtype=torch.int64, device="cuda"
),
torch.tensor(
[[4, 8, 9, 10], [4, 5, 6, 7]], dtype=torch.int64, device="cuda"
),
torch.tensor(
[[20, 24, 21, 28], [24, 28, 20, 21]], dtype=torch.int64, device="cuda"
),
torch.tensor(
[[36, 40, 41, 44], [36, 40, 44, 45]], dtype=torch.int64, device="cuda"
),
]
seq_lens = torch.tensor([5, 10], dtype=torch.int64, device="cuda")
topk = 4
depth = 4
num_draft_token = 8
parent_list, top_scores_index, draft_tokens = organize_draft_results(
score_list, token_list, parents_list, num_draft_token
)
(
tree_mask,
position,
retrieve_index,
retrieve_next_token,
retrieve_next_sibling,
draft_tokens,
) = build_tree_kernel_efficient(
verified_id=verified_id,
parent_list=parent_list,
top_scores_index=top_scores_index,
draft_tokens=draft_tokens,
seq_lens=seq_lens,
seq_lens_sum=torch.sum(seq_lens).item(),
topk=topk,
spec_steps=depth,
num_verify_tokens=num_draft_token,
)
# Verify expected outputs
self.assertEqual(
position.tolist(),
[5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 12, 12, 13, 14],
"Position tensor does not match expected values",
)
self.assertEqual(
retrieve_index.tolist(),
[
[0, 1, 2, 3, 4, 5, 6, 7],
[8, 9, 10, 11, 12, 13, 14, 15],
],
"Retrieve index tensor does not match expected values",
)
self.assertEqual(
retrieve_next_token.tolist(),
[
[1, 3, 4, 5, 6, 7, -1, -1],
[1, 2, -1, 6, -1, -1, 7, -1],
],
"Retrieve next token tensor does not match expected values",
)
self.assertEqual(
retrieve_next_sibling.tolist(),
[
[-1, 2, -1, -1, -1, -1, -1, -1],
[-1, -1, 3, 4, 5, -1, -1, -1],
],
"Retrieve next sibling tensor does not match expected values",
)
self.assertEqual(
draft_tokens.tolist(),
[
29974,
29896,
29906,
29889,
29974,
29946,
29896,
29946,
13,
13,
22550,
4136,
16492,
8439,
29871,
29941,
],
"Draft tokens tensor does not match expected values",
)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment