"docs/source/vscode:/vscode.git/clone" did not exist on "0114f4fd79ce8552533b063b5a75ac9c2a3f9b54"
Unverified Commit 55c16436 authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Improve benchmark scripts & rename some scripts (#477)

parent 2b605ab1
......@@ -65,6 +65,7 @@ def main(args):
def get_one_answer(i):
answer = call_generate(
prompt=few_shot_examples + questions[i],
#prompt="System: " + few_shot_examples + "<|separator|>\n\n" + questions[i],
temperature=0,
max_tokens=256,
stop="Question",
......
......@@ -26,8 +26,7 @@ from typing import AsyncGenerator, List, Tuple
import aiohttp
import numpy as np
from tqdm.asyncio import tqdm_asyncio
from transformers import PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer import get_tokenizer
from transformers import AutoTokenizer
# (prompt len, output len, latency)
REQUEST_LATENCY: List[Tuple[int, int, float]] = []
......@@ -36,7 +35,7 @@ REQUEST_LATENCY: List[Tuple[int, int, float]] = []
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
tokenizer: AutoTokenizer,
) -> List[Tuple[str, int, int]]:
# Load the dataset.
with open(dataset_path) as f:
......@@ -150,22 +149,47 @@ async def send_request(
"inputs": prompt,
"parameters": params,
}
elif backend == "xinfer":
pass
else:
raise ValueError(f"Unknown backend: {backend}")
timeout = aiohttp.ClientTimeout(total=3 * 3600)
async with aiohttp.ClientSession(timeout=timeout) as session:
while True:
async with session.post(api_url, headers=headers, json=pload) as response:
chunks = []
async for chunk, _ in response.content.iter_chunks():
chunks.append(chunk)
output = b"".join(chunks).decode("utf-8")
output = json.loads(output)
if backend != "xinfer":
timeout = aiohttp.ClientTimeout(total=3 * 3600)
async with aiohttp.ClientSession(timeout=timeout) as session:
while True:
async with session.post(api_url, headers=headers, json=pload) as response:
chunks = []
async for chunk, _ in response.content.iter_chunks():
chunks.append(chunk)
output = b"".join(chunks).decode("utf-8")
output = json.loads(output)
# Re-send the request if it failed.
if "error" not in output:
break
# Re-send the request if it failed.
if "error" not in output:
break
else:
print(output)
else:
import grpc
from xlm.proto import sampler_pb2, sampler_pb2_grpc
api_url = api_url.replace("http://", "").replace("/generate", "")
sampler_channel = grpc.aio.insecure_channel(api_url)
sampler = sampler_pb2_grpc.SamplerStub(sampler_channel)
request_end_time = time.perf_counter()
sample_request = sampler_pb2.SampleTextRequest(
prompt=prompt,
settings=sampler_pb2.SampleSettings(
max_len=output_len,
rng_seed=0,
temperature=0,
nucleus_p=1,
),
)
stream = sampler.SampleText(sample_request)
response = "".join([x.text async for x in stream])
request_end_time = time.perf_counter()
request_latency = request_end_time - request_start_time
......@@ -204,8 +228,18 @@ def main(args: argparse.Namespace):
np.random.seed(args.seed)
api_url = f"http://{args.host}:{args.port}/generate"
tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset:
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
else:
input_lens = np.random.randint(args.input_len * args.range_ratio, args.input_len + 1, size=args.num_prompts)
output_lens = np.random.randint(args.output_len * args.range_ratio, args.output_len + 1, size=args.num_prompts)
offsets = np.random.randint(0, tokenizer.vocab_size, size=args.num_prompts)
input_requests = []
for i in range(args.num_prompts):
prompt = tokenizer.decode([(offsets[i] + i + j) % tokenizer.vocab_size for j in range(input_lens[i])])
input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
benchmark_start_time = time.perf_counter()
asyncio.run(
......@@ -246,16 +280,21 @@ if __name__ == "__main__":
parser.add_argument(
"--backend",
type=str,
default="vllm",
choices=["vllm", "tgi", "srt", "lightllm"],
default="srt",
choices=["vllm", "tgi", "srt", "lightllm", "xinfer"],
)
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--dataset", type=str, required=True, help="Path to the dataset."
"--dataset", type=str, help="Path to the dataset."
)
parser.add_argument("--input-len", type=str, default=1024)
parser.add_argument("--output-len", type=str, default=128)
parser.add_argument("--range-ratio", type=float, default=1.0)
parser.add_argument(
"--tokenizer", type=str, required=True, help="Name or path of the tokenizer."
"--tokenizer", type=str,
default="NousResearch/Meta-Llama-3-8B",
help="Name or path of the tokenizer."
)
parser.add_argument(
"--best-of",
......
......@@ -18,20 +18,22 @@ if __name__ == "__main__":
args.port = 21000
elif args.backend == "lightllm":
args.port = 22000
elif args.backend == "xinfer":
args.port = 9988
else:
raise ValueError(f"Invalid backend: {args.backend}")
url = f"{args.host}:{args.port}"
a = random.randint(0, 1 << 20)
max_new_tokens = 256
prompt = f"{a, }"
tic = time.time()
if args.backend == "srt":
response = requests.post(
url + "/generate",
json={
"text": f"The capital of France is",
# "input_ids": [[2] * 256] * 196,
"text": prompt,
"sampling_params": {
"temperature": 0,
"max_new_tokens": max_new_tokens,
......@@ -42,7 +44,7 @@ if __name__ == "__main__":
response = requests.post(
url + "/generate",
json={
"inputs": f"{a}, ",
"inputs": prompt,
"parameters": {
"temperature": 0,
"max_new_tokens": max_new_tokens,
......@@ -53,14 +55,36 @@ if __name__ == "__main__":
response = requests.post(
url + "/generate",
json={
"prompt": f"{a}, ",
"prompt": prompt,
"temperature": 0,
"max_tokens": max_new_tokens,
},
)
elif args.backend == "xinfer":
import grpc
from xlm.proto import sampler_pb2, sampler_pb2_grpc
sampler_channel = grpc.insecure_channel(url.replace("http://", ""))
sampler = sampler_pb2_grpc.SamplerStub(sampler_channel)
tic = time.time()
sample_request = sampler_pb2.SampleTextRequest(
prompt=prompt,
settings=sampler_pb2.SampleSettings(
max_len=max_new_tokens,
rng_seed=0,
temperature=0,
nucleus_p=1,
),
)
stream = sampler.SampleText(sample_request)
response = "".join([x.text for x in stream])
latency = time.time() - tic
ret = response.json()
if isinstance(response, str):
ret = response
else:
ret = response.json()
print(ret)
speed = max_new_tokens / latency
......
......@@ -183,13 +183,13 @@ class TiktokenTokenizer:
self.eos_token_id = tokenizer.eos_token
self.vocab_size = tokenizer.n_vocab
def encode(self, x):
def encode(self, x, add_special_tokens=False):
return self.tokenizer.encode(x)
def decode(self, x):
return self.tokenizer.decode(x)
def batch_decode(self, batch, skip_special_tokens, spaces_between_special_tokens):
def batch_decode(self, batch, skip_special_tokens=True, spaces_between_special_tokens=False):
return self.tokenizer.decode_batch(batch)
def convert_ids_to_tokens(self, index):
......
......@@ -66,6 +66,7 @@ class Req:
self.finish_reason = None
self.hit_stop_str = None
# Prefix info
self.extend_input_len = 0
self.prefix_indices = []
self.last_node = None
......@@ -76,8 +77,8 @@ class Req:
self.top_logprobs_num = 0
self.normalized_prompt_logprob = None
self.prefill_token_logprobs = None
self.decode_token_logprobs = []
self.prefill_top_logprobs = None
self.decode_token_logprobs = []
self.decode_top_logprobs = []
# The tokens is prefilled but need to be considered as decode tokens
# and should be updated for the decode logprobs
......
......@@ -91,26 +91,27 @@ class ModelRpcServer:
tokenizer_mode=server_args.tokenizer_mode,
trust_remote_code=server_args.trust_remote_code,
)
self.max_total_num_token = self.model_runner.max_total_num_token
self.max_num_running_seq = self.max_total_num_token // 2
self.max_prefill_num_token = max(
self.max_total_num_tokens = self.model_runner.max_total_num_tokens
self.max_prefill_tokens = max(
self.model_config.context_len,
(
self.max_total_num_token // 6
if server_args.max_prefill_num_token is None
else server_args.max_prefill_num_token
self.max_total_num_tokens // 6
if server_args.max_prefill_tokens is None
else server_args.max_prefill_tokens
),
)
self.max_running_requests = (self.max_total_num_tokens // 2
if server_args.max_running_requests is None else server_args.max_running_requests)
self.int_token_logit_bias = torch.tensor(
get_int_token_logit_bias(self.tokenizer, self.model_config.vocab_size)
)
set_random_seed(server_args.random_seed)
# Print info
logger.info(
f"[rank={self.tp_rank}] "
f"max_total_num_token={self.max_total_num_token}, "
f"max_prefill_num_token={self.max_prefill_num_token}, "
logger.info(f"[rank={self.tp_rank}] "
f"max_total_num_tokens={self.max_total_num_tokens}, "
f"max_prefill_tokens={self.max_prefill_tokens}, "
f"context_len={self.model_config.context_len}, "
)
if self.tp_rank == 0:
......@@ -125,9 +126,9 @@ class ModelRpcServer:
self.tree_cache_metrics = {"total": 0, "hit": 0}
self.scheduler = Scheduler(
self.schedule_heuristic,
self.max_num_running_seq,
self.max_prefill_num_token,
self.max_total_num_token,
self.max_running_requests,
self.max_prefill_tokens,
self.max_total_num_tokens,
self.tree_cache,
)
self.req_to_token_pool = self.model_runner.req_to_token_pool
......@@ -219,7 +220,7 @@ class ModelRpcServer:
# Print stats
if self.tp_rank == 0:
if self.decode_forward_ct % 40 == 0:
num_used = self.max_total_num_token - (
num_used = self.max_total_num_tokens - (
self.token_to_kv_pool.available_size()
+ self.tree_cache.evictable_size()
)
......@@ -231,7 +232,7 @@ class ModelRpcServer:
logger.info(
f"#running-req: {len(self.running_batch.reqs)}, "
f"#token: {num_used}, "
f"token usage: {num_used / self.max_total_num_token:.2f}, "
f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
f"gen throughput (token/s): {throuhgput:.2f}, "
f"#queue-req: {len(self.forward_queue)}"
)
......@@ -248,10 +249,10 @@ class ModelRpcServer:
self.token_to_kv_pool.available_size()
+ self.tree_cache.evictable_size()
)
if available_size != self.max_total_num_token:
if available_size != self.max_total_num_tokens:
warnings.warn(
"Warning: "
f"available_size={available_size}, max_total_num_token={self.max_total_num_token}\n"
f"available_size={available_size}, max_total_num_tokens={self.max_total_num_tokens}\n"
"KV cache pool leak detected!"
)
......@@ -297,14 +298,14 @@ class ModelRpcServer:
req.sampling_params.max_new_tokens = min(
req.sampling_params.max_new_tokens,
self.model_config.context_len - 1 - len(req.origin_input_ids),
self.max_total_num_token - 128 - len(req.origin_input_ids),
self.max_total_num_tokens - 128 - len(req.origin_input_ids),
)
self.forward_queue.append(req)
def get_new_fill_batch(self):
if (
self.running_batch is not None
and len(self.running_batch.reqs) > self.max_num_running_seq
and len(self.running_batch.reqs) > self.max_running_requests
):
return None
......@@ -360,7 +361,7 @@ class ModelRpcServer:
req.extend_input_len + req.max_new_tokens() + new_batch_total_tokens
< available_size
and req.extend_input_len + new_batch_input_tokens
< self.max_prefill_num_token
< self.max_prefill_tokens
):
delta = self.tree_cache.inc_lock_ref(req.last_node)
available_size += delta
......
......@@ -301,19 +301,19 @@ class ModelRunner:
return max_num_token
def init_memory_pool(self, total_gpu_memory):
self.max_total_num_token = self.profile_max_num_token(total_gpu_memory)
self.max_total_num_tokens = self.profile_max_num_token(total_gpu_memory)
if self.max_total_num_token <= 0:
if self.max_total_num_tokens <= 0:
raise RuntimeError(
"Not enought memory. " "Please try to increase --mem-fraction-static."
)
self.req_to_token_pool = ReqToTokenPool(
int(self.max_total_num_token / self.model_config.context_len * 256),
int(self.max_total_num_tokens / self.model_config.context_len * 256),
self.model_config.context_len + 8,
)
self.token_to_kv_pool = TokenToKVPool(
self.max_total_num_token,
self.max_total_num_tokens,
dtype=torch.float16,
head_num=self.model_config.num_key_value_heads // self.tp_size,
head_dim=self.model_config.head_dim,
......
......@@ -6,15 +6,15 @@ class Scheduler:
def __init__(
self,
schedule_heuristic,
max_running_seq,
max_prefill_num_token,
max_total_num_token,
max_running_seqs,
max_prefill_num_tokens,
max_total_num_tokens,
tree_cache,
):
self.schedule_heuristic = schedule_heuristic
self.max_running_seq = max_running_seq
self.max_prefill_num_token = max_prefill_num_token
self.max_total_num_token = max_total_num_token
self.max_running_seqs = max_running_seqs
self.max_prefill_num_tokens = max_prefill_num_tokens
self.max_total_num_tokens = max_total_num_tokens
self.tree_cache = tree_cache
def get_priority_queue(self, forward_queue):
......
......@@ -24,7 +24,8 @@ class ServerArgs:
# Memory and scheduling
mem_fraction_static: Optional[float] = None
max_prefill_num_token: Optional[int] = None
max_prefill_tokens: Optional[int] = None
max_running_requests: Optional[int] = None
schedule_heuristic: str = "lpm"
schedule_conservativeness: float = 1.0
......@@ -149,11 +150,17 @@ class ServerArgs:
help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
)
parser.add_argument(
"--max-prefill-num-token",
"--max-prefill-tokens",
type=int,
default=ServerArgs.max_prefill_num_token,
default=ServerArgs.max_prefill_tokens,
help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
)
parser.add_argument(
"--max-running-requests",
type=int,
default=ServerArgs.max_running_requests,
help="The maximum number of running requests.",
)
parser.add_argument(
"--schedule-heuristic",
type=str,
......
......@@ -88,6 +88,28 @@ def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
return pred
def call_generate_xinfer(prompt, temperature, max_tokens, stop=None, url=None):
import grpc
from xlm.proto import sampler_pb2, sampler_pb2_grpc
sampler_channel = grpc.insecure_channel(url.replace("http://", ""))
sampler = sampler_pb2_grpc.SamplerStub(sampler_channel)
sample_request = sampler_pb2.SampleTextRequest(
prompt=prompt,
settings=sampler_pb2.SampleSettings(
max_len=max_tokens,
rng_seed=0,
temperature=max(temperature, 1e-7),
nucleus_p=1,
stop_strings=[stop],
),
)
stream = sampler.SampleText(sample_request)
response = "".join([x.text for x in stream])
return response
def call_generate_guidance(
prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
......@@ -228,6 +250,7 @@ def add_common_other_args_and_parse(parser):
"vllm",
"outlines",
"lightllm",
"xinfer",
"guidance",
"lmql",
"srt-raw",
......@@ -248,6 +271,7 @@ def add_common_other_args_and_parse(parser):
"lightllm": 22000,
"lmql": 23000,
"srt-raw": 30000,
"xinfer": 9988,
}
args.port = default_port.get(args.backend, None)
return args
......@@ -283,6 +307,8 @@ def _get_call_generate(args):
return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
elif args.backend == "srt-raw":
return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
elif args.backend == "xinfer":
return partial(call_generate_xinfer, url=f"{args.host}:{args.port}")
elif args.backend == "outlines":
return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
elif args.backend == "guidance":
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment