Unverified Commit 53aed988 authored by HandH1998's avatar HandH1998 Committed by GitHub
Browse files

Refactor MoE (#2575)


Co-authored-by: default avatarzhyncs <me@zhyncs.com>
parent 8a56b431
......@@ -94,7 +94,10 @@ class ModelConfig:
)
# FIXME: temporary special judge for MLA architecture
if "DeepseekV2ForCausalLM" in self.hf_config.architectures:
if (
"DeepseekV2ForCausalLM" in self.hf_config.architectures
or "DeepseekV3ForCausalLM" in self.hf_config.architectures
):
self.head_dim = 256
self.attention_arch = AttentionArch.MLA
self.kv_lora_rank = self.hf_config.kv_lora_rank
......
......@@ -30,6 +30,7 @@ from sglang.srt.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from sglang.srt.layers.quantization.fp8_utils import BlockQuantScaleParameter
from sglang.srt.utils import set_weight_attrs
logger = logging.getLogger(__name__)
......@@ -628,8 +629,19 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
assert loaded_shard_id < len(self.output_sizes)
tp_size = get_tensor_model_parallel_world_size()
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
shard_size = self.output_sizes[loaded_shard_id] // tp_size
if isinstance(param, BlockQuantScaleParameter):
weight_block_size = self.quant_method.quant_config.weight_block_size
block_n, _ = weight_block_size[0], weight_block_size[1]
shard_offset = (
(sum(self.output_sizes[:loaded_shard_id]) + block_n - 1) // block_n
) // tp_size
shard_size = (
(self.output_sizes[loaded_shard_id] + block_n - 1) // block_n // tp_size
)
else:
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
shard_size = self.output_sizes[loaded_shard_id] // tp_size
param.load_merged_column_weight(
loaded_weight=loaded_weight,
......@@ -795,6 +807,12 @@ class QKVParallelLinear(ColumnParallelLinear):
shard_offset = self._get_shard_offset_mapping(loaded_shard_id)
shard_size = self._get_shard_size_mapping(loaded_shard_id)
if isinstance(param, BlockQuantScaleParameter):
weight_block_size = self.quant_method.quant_config.weight_block_size
block_n, _ = weight_block_size[0], weight_block_size[1]
shard_offset = (shard_offset + block_n - 1) // block_n
shard_size = (shard_size + block_n - 1) // block_n
param.load_qkv_weight(
loaded_weight=loaded_weight,
num_heads=self.num_kv_head_replicas,
......
......@@ -6,7 +6,7 @@ import functools
import json
import logging
import os
from typing import Any, Callable, Dict, Optional, Tuple
from typing import Any, Callable, Dict, List, Optional, Tuple
import torch
import triton
......@@ -14,6 +14,7 @@ import triton.language as tl
from vllm import _custom_ops as ops
from sglang.srt.layers.moe.topk import select_experts
from sglang.srt.layers.quantization.fp8_kernel import per_token_group_quant_fp8
from sglang.srt.utils import direct_register_custom_op, get_device_name
logger = logging.getLogger(__name__)
......@@ -48,8 +49,14 @@ def fused_moe_kernel(
stride_bn,
stride_cm,
stride_cn,
stride_asm,
stride_ask,
stride_bse,
stride_bsk,
stride_bsn,
# Block size for block-wise quantization
group_n: tl.constexpr,
group_k: tl.constexpr,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
......@@ -133,8 +140,15 @@ def fused_moe_kernel(
b_scale = tl.load(b_scale_ptrs)
if use_fp8_w8a8:
a_scale = tl.load(a_scale_ptr)
b_scale = tl.load(b_scale_ptr + off_experts)
if group_k > 0 and group_n > 0:
a_scale_ptrs = a_scale_ptr + (offs_token // top_k) * stride_asm
offs_bsn = offs_bn // group_n
b_scale_ptrs = (
b_scale_ptr + off_experts * stride_bse + offs_bsn * stride_bsn
)
else:
a_scale = tl.load(a_scale_ptr)
b_scale = tl.load(b_scale_ptr + off_experts)
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix.
......@@ -165,7 +179,17 @@ def fused_moe_kernel(
if use_int8_w8a16:
accumulator = tl.dot(a, b.to(compute_type), acc=accumulator)
elif use_fp8_w8a8:
accumulator = tl.dot(a, b, acc=accumulator)
if group_k > 0 and group_n > 0:
k_start = k * BLOCK_SIZE_K
offs_ks = k_start // group_k
a_scale = tl.load(
a_scale_ptrs + offs_ks * stride_ask, mask=token_mask, other=0.0
)
b_scale = tl.load(b_scale_ptrs + offs_ks * stride_bsk)
accumulator += tl.dot(a, b) * a_scale[:, None] * b_scale[None, :]
else:
accumulator = tl.dot(a, b, acc=accumulator)
else:
accumulator += tl.dot(a, b)
# Advance the ptrs to the next K block.
......@@ -178,7 +202,10 @@ def fused_moe_kernel(
if use_int8_w8a16:
accumulator = (accumulator * b_scale).to(compute_type)
elif use_fp8_w8a8:
accumulator = (accumulator * a_scale * b_scale).to(compute_type)
if group_k > 0 and group_n > 0:
accumulator = accumulator.to(compute_type)
else:
accumulator = (accumulator * a_scale * b_scale).to(compute_type)
else:
accumulator = accumulator.to(compute_type)
# -----------------------------------------------------------
......@@ -262,6 +289,7 @@ def invoke_fused_moe_kernel(
compute_type: tl.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
block_shape: Optional[List[int]] = None,
) -> None:
assert topk_weights.stride(1) == 1
assert sorted_token_ids.stride(0) == 1
......@@ -269,8 +297,16 @@ def invoke_fused_moe_kernel(
padded_size = 0
if use_fp8_w8a8:
padded_size = padding_size
A, A_scale = ops.scaled_fp8_quant(A, A_scale)
assert B_scale is not None
if block_shape is None:
A, A_scale = ops.scaled_fp8_quant(A, A_scale)
else:
assert len(block_shape) == 2
block_n, block_k = block_shape[0], block_shape[1]
A, A_scale = per_token_group_quant_fp8(A, block_k)
assert triton.cdiv(A.shape[-1], block_k) == A_scale.shape[-1]
assert triton.cdiv(B.shape[-2], block_n) == B_scale.shape[-2]
assert triton.cdiv(B.shape[-1], block_k) == B_scale.shape[-1]
elif use_int8_w8a16:
assert B_scale is not None
else:
......@@ -309,8 +345,13 @@ def invoke_fused_moe_kernel(
B.stride(1),
C.stride(1),
C.stride(2),
B_scale.stride(0) if B_scale is not None and use_int8_w8a16 else 0,
B_scale.stride(1) if B_scale is not None and use_int8_w8a16 else 0,
A_scale.stride(0) if A_scale is not None and A_scale.ndim == 2 else 0,
A_scale.stride(1) if A_scale is not None and A_scale.ndim == 2 else 0,
B_scale.stride(0) if B_scale is not None and B_scale.ndim >= 2 else 0,
B_scale.stride(2) if B_scale is not None and B_scale.ndim == 3 else 0,
B_scale.stride(1) if B_scale is not None and B_scale.ndim >= 2 else 0,
0 if block_shape is None else block_shape[0],
0 if block_shape is None else block_shape[1],
MUL_ROUTED_WEIGHT=mul_routed_weight,
top_k=top_k,
compute_type=compute_type,
......@@ -415,6 +456,7 @@ def try_get_optimal_moe_config(
dtype: Optional[str],
M: int,
is_marlin: bool = False,
block_shape: Optional[List[int]] = None,
):
from sglang.srt.layers.moe.fused_moe_triton import get_config
......@@ -433,6 +475,13 @@ def try_get_optimal_moe_config(
else:
# Else use the default config
config = get_default_config(M, E, N, w1_shape[2], top_k, dtype, is_marlin)
# TODO(HandH1998): Optimize the configs of block-wise quant.
# NOTE(HandH1998): For block-wise quant,
# BLOCK_K must be divisable by block_shape[1]
# BLOCK_N and BLOCK_M has no requirements
if block_shape is not None:
config["BLOCK_SIZE_N"] = block_shape[0]
config["BLOCK_SIZE_K"] = block_shape[1]
return config
......@@ -464,6 +513,7 @@ def inplace_fused_experts(
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None,
) -> None:
fused_experts_impl(
hidden_states,
......@@ -478,6 +528,7 @@ def inplace_fused_experts(
w2_scale,
a1_scale,
a2_scale,
block_shape,
)
......@@ -493,6 +544,7 @@ def inplace_fused_experts_fake(
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None,
) -> None:
pass
......@@ -517,6 +569,7 @@ def outplace_fused_experts(
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None,
) -> torch.Tensor:
return fused_experts_impl(
hidden_states,
......@@ -531,6 +584,7 @@ def outplace_fused_experts(
w2_scale,
a1_scale,
a2_scale,
block_shape,
)
......@@ -546,6 +600,7 @@ def outplace_fused_experts_fake(
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None,
) -> torch.Tensor:
return torch.empty_like(hidden_states)
......@@ -571,6 +626,7 @@ def fused_experts(
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None,
):
if inplace:
torch.ops.sglang.inplace_fused_experts(
......@@ -585,6 +641,7 @@ def fused_experts(
w2_scale,
a1_scale,
a2_scale,
block_shape,
)
return hidden_states
else:
......@@ -600,6 +657,7 @@ def fused_experts(
w2_scale,
a1_scale,
a2_scale,
block_shape,
)
......@@ -616,6 +674,7 @@ def fused_experts_impl(
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None,
):
padded_size = padding_size
if not use_fp8_w8a8:
......@@ -647,6 +706,7 @@ def fused_experts_impl(
(w2.shape[0], w2.shape[1], w2.shape[2] - padded_size),
topk_ids.shape[1],
config_dtype,
block_shape=block_shape,
)
config = get_config_func(M)
......@@ -719,6 +779,7 @@ def fused_experts_impl(
compute_type=compute_type,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
block_shape=block_shape,
)
ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, N))
......@@ -740,6 +801,7 @@ def fused_experts_impl(
compute_type=compute_type,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
block_shape=block_shape,
)
torch.sum(
......@@ -768,6 +830,7 @@ def fused_moe(
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None,
) -> torch.Tensor:
"""
This function computes a Mixture of Experts (MoE) layer using two sets of
......@@ -795,6 +858,12 @@ def fused_moe(
w1.
- w2_scale (Optional[torch.Tensor]): Optional scale to be used for
w2.
- a1_scale (Optional[torch.Tensor]): Optional scale to be used for
a1.
- a2_scale (Optional[torch.Tensor]): Optional scale to be used for
a2.
- block_shape: (Optional[List[int]]): Optional block size for block-wise
quantization.
Returns:
- torch.Tensor: The output tensor after applying the MoE layer.
......@@ -826,4 +895,5 @@ def fused_moe(
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
block_shape=block_shape,
)
......@@ -34,6 +34,7 @@ class FusedMoeWeightScaleSupported(Enum):
TENSOR = "tensor"
CHANNEL = "channel"
GROUP = "group"
BLOCK = "block"
class FusedMoEMethodBase(QuantizeMethodBase):
......@@ -214,6 +215,7 @@ class FusedMoE(torch.nn.Module):
)
self.top_k = top_k
self.num_experts = num_experts
assert intermediate_size % self.tp_size == 0
self.intermediate_size_per_partition = intermediate_size // self.tp_size
self.reduce_results = reduce_results
self.renormalize = renormalize
......@@ -470,7 +472,10 @@ class FusedMoE(torch.nn.Module):
expert_data=expert_data,
tp_rank=tp_rank,
)
elif quant_method == FusedMoeWeightScaleSupported.GROUP.value:
elif quant_method in [
FusedMoeWeightScaleSupported.GROUP.value,
FusedMoeWeightScaleSupported.BLOCK.value,
]:
self._load_model_weight_or_group_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
......
......@@ -9,6 +9,7 @@ import torch.nn.functional as F
from torch.nn import Module
from torch.nn.parameter import Parameter
from vllm import _custom_ops as ops
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.linear import LinearBase
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
......@@ -32,7 +33,11 @@ from sglang.srt.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from sglang.srt.layers.quantization.fp8_utils import normalize_e4m3fn_to_e4m3fnuz
from sglang.srt.layers.quantization.fp8_utils import (
BlockQuantScaleParameter,
apply_w8a8_block_fp8_linear,
normalize_e4m3fn_to_e4m3fnuz,
)
from sglang.srt.utils import (
get_bool_env_var,
is_hip,
......@@ -53,6 +58,7 @@ class Fp8Config(QuantizationConfig):
is_checkpoint_fp8_serialized: bool = False,
activation_scheme: str = "dynamic",
ignored_layers: Optional[List[str]] = None,
weight_block_size: List[int] = None,
) -> None:
self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
if is_checkpoint_fp8_serialized:
......@@ -64,6 +70,20 @@ class Fp8Config(QuantizationConfig):
raise ValueError(f"Unsupported activation scheme {activation_scheme}")
self.activation_scheme = activation_scheme
self.ignored_layers = ignored_layers or []
if weight_block_size is not None:
if not is_checkpoint_fp8_serialized:
raise ValueError(
f"The block-wise quantization only supports fp8-serialized checkpoint for now."
)
if len(weight_block_size) != 2:
raise ValueError(
f"The quantization block size of weight must have 2 dimensions, but got {len(weight_block_size)} dimensions."
)
if activation_scheme != "dynamic":
raise ValueError(
f"The block-wise quantization only supports dynamic activation scheme for now, but got {activation_scheme} activation scheme."
)
self.weight_block_size = weight_block_size
@classmethod
def get_name(cls) -> str:
......@@ -87,10 +107,12 @@ class Fp8Config(QuantizationConfig):
is_checkpoint_fp8_serialized = "fp8" in quant_method
activation_scheme = cls.get_from_keys(config, ["activation_scheme"])
ignored_layers = cls.get_from_keys_or(config, ["ignored_layers"], None)
weight_block_size = cls.get_from_keys_or(config, ["weight_block_size"], None)
return cls(
is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized,
activation_scheme=activation_scheme,
ignored_layers=ignored_layers,
weight_block_size=weight_block_size,
)
def get_quant_method(
......@@ -143,6 +165,11 @@ class Fp8LinearMethod(LinearMethodBase):
if is_hip():
self.use_marlin = False
self.block_quant = self.quant_config.weight_block_size is not None
if self.block_quant:
# Marlin doesn't support block-wise fp8
self.use_marlin = False
def create_weights(
self,
layer: torch.nn.Module,
......@@ -153,10 +180,35 @@ class Fp8LinearMethod(LinearMethodBase):
params_dtype: torch.dtype,
**extra_weight_attrs,
):
del input_size, output_size
output_size_per_partition = sum(output_partition_sizes)
weight_loader = extra_weight_attrs.get("weight_loader")
tp_size = get_tensor_model_parallel_world_size()
if self.block_quant:
block_n, block_k = (
self.quant_config.weight_block_size[0],
self.quant_config.weight_block_size[1],
)
# Required by row parallel
if tp_size > 1 and input_size // input_size_per_partition == tp_size:
if input_size_per_partition % block_k != 0:
raise ValueError(
f"Weight input_size_per_partition = "
f"{input_size_per_partition} is not divisible by "
f"weight quantization block_k = {block_k}."
)
# Required by collum parallel or enabling merged weights
if (
tp_size > 1 and output_size // output_size_per_partition == tp_size
) or len(output_partition_sizes) > 1:
for output_partition_size in output_partition_sizes:
if output_partition_size % block_n != 0:
raise ValueError(
f"Weight output_partition_size = "
f"{output_partition_size} is not divisible by "
f"weight quantization block_n = {block_n}."
)
layer.logical_widths = output_partition_sizes
layer.input_size_per_partition = input_size_per_partition
......@@ -184,13 +236,27 @@ class Fp8LinearMethod(LinearMethodBase):
# Otherwise, wait until process_weights_after_loading.
if self.quant_config.is_checkpoint_fp8_serialized:
# WEIGHT SCALE
scale = PerTensorScaleParameter(
data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
weight_loader=weight_loader,
)
scale[:] = torch.finfo(torch.float32).min
layer.register_parameter("weight_scale", scale)
if self.block_quant:
assert self.quant_config.activation_scheme == "dynamic"
scale = BlockQuantScaleParameter(
data=torch.empty(
(output_size_per_partition + block_n - 1) // block_n,
(input_size_per_partition + block_k - 1) // block_k,
dtype=torch.float32,
),
input_dim=1,
output_dim=0,
weight_loader=weight_loader,
)
scale[:] = torch.finfo(torch.float32).min
layer.register_parameter("weight_scale_inv", scale)
else:
scale = PerTensorScaleParameter(
data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
weight_loader=weight_loader,
)
scale[:] = torch.finfo(torch.float32).min
layer.register_parameter("weight_scale", scale)
# INPUT ACTIVATION SCALE
if self.quant_config.activation_scheme == "static":
......@@ -205,6 +271,9 @@ class Fp8LinearMethod(LinearMethodBase):
layer.register_parameter("input_scale", None)
def process_weights_after_loading(self, layer: Module) -> None:
# Block quant doesn't need to process weights after loading
if self.block_quant:
return
layer.weight = torch.nn.Parameter(layer.weight.data, requires_grad=False)
# If checkpoint not serialized fp8, quantize the weights.
if not self.quant_config.is_checkpoint_fp8_serialized:
......@@ -295,6 +364,16 @@ class Fp8LinearMethod(LinearMethodBase):
bias=bias,
)
if self.block_quant:
return apply_w8a8_block_fp8_linear(
input=x,
weight=layer.weight,
block_size=self.quant_config.weight_block_size,
weight_scale=layer.weight_scale_inv,
input_scale=layer.input_scale,
bias=bias,
)
return apply_fp8_linear(
input=x,
weight=layer.weight,
......@@ -339,6 +418,7 @@ class Fp8MoEMethod:
def __init__(self, quant_config):
self.quant_config = quant_config
self.block_quant = self.quant_config.weight_block_size is not None
def create_weights(
self,
......@@ -353,6 +433,28 @@ class Fp8MoEMethod:
if self.quant_config.is_checkpoint_fp8_serialized:
params_dtype = torch.float8_e4m3fn
tp_size = get_tensor_model_parallel_world_size()
if self.block_quant:
block_n, block_k = (
self.quant_config.weight_block_size[0],
self.quant_config.weight_block_size[1],
)
# NOTE(HandH1998): To ensure proper alignment of the block-wise quantization scales, the output_size of the weights for both the gate and up layers must be divisible by block_n.
# Required by collum parallel or enabling merged weights
if intermediate_size % block_n != 0:
raise ValueError(
f"The output_size of gate's and up's weight = "
f"{intermediate_size} is not divisible by "
f"weight quantization block_n = {block_n}."
)
if tp_size > 1:
# Required by row parallel
if intermediate_size % block_k != 0:
raise ValueError(
f"The input_size of down's weight = "
f"{intermediate_size} is not divisible by "
f"weight quantization block_k = {block_k}."
)
# WEIGHTS
w13_weight = torch.nn.Parameter(
......@@ -374,21 +476,45 @@ class Fp8MoEMethod:
set_weight_attrs(w2_weight, extra_weight_attrs)
# WEIGHT_SCALES
# Allocate 2 scales for w1 and w3 respectively.
# They will be combined to a single scale after weight loading.
w13_weight_scale = torch.nn.Parameter(
torch.ones(num_experts, 2, dtype=torch.float32), requires_grad=False
)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
w2_weight_scale = torch.nn.Parameter(
torch.ones(num_experts, dtype=torch.float32), requires_grad=False
)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
if self.block_quant:
w13_weight_scale = torch.nn.Parameter(
torch.ones(
num_experts,
2 * ((intermediate_size + block_n - 1) // block_n),
(hidden_size + block_k - 1) // block_k,
dtype=torch.float32,
),
requires_grad=False,
)
w2_weight_scale = torch.nn.Parameter(
torch.ones(
num_experts,
(hidden_size + block_n - 1) // block_n,
(intermediate_size + block_k - 1) // block_k,
dtype=torch.float32,
),
requires_grad=False,
)
layer.register_parameter("w13_weight_scale_inv", w13_weight_scale)
layer.register_parameter("w2_weight_scale_inv", w2_weight_scale)
assert self.quant_config.activation_scheme == "dynamic"
else:
# Allocate 2 scales for w1 and w3 respectively.
# They will be combined to a single scale after weight loading.
w13_weight_scale = torch.nn.Parameter(
torch.ones(num_experts, 2, dtype=torch.float32), requires_grad=False
)
w2_weight_scale = torch.nn.Parameter(
torch.ones(num_experts, dtype=torch.float32), requires_grad=False
)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
# Add the quantization method used (per tensor/grouped/channel)
# to ensure the weight scales are loaded in properly
extra_weight_attrs.update(
{"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
{"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
if self.block_quant
else {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
)
# If loading fp8 checkpoint, pass the weight loaders.
# If loading an fp16 checkpoint, do not (we will quantize in
......@@ -422,7 +548,9 @@ class Fp8MoEMethod:
layer.w2_input_scale = None
def process_weights_after_loading(self, layer: Module) -> None:
# Block quant doesn't need to process weights after loading
if self.block_quant:
return
# If checkpoint is fp16 or bfloat16, quantize in place.
if not self.quant_config.is_checkpoint_fp8_serialized:
# If ROCm, use float8_e4m3fnuz instead (MI300x HW)
......@@ -519,7 +647,6 @@ class Fp8MoEMethod:
layer.w2_input_scale = torch.nn.Parameter(
w2_input_scale, requires_grad=False
)
# Fp8 moe kernel needs single weight scale for w13 per expert.
# We take the max then dequant and requant each expert.
assert layer.w13_weight_scale is not None
......@@ -594,10 +721,17 @@ class Fp8MoEMethod:
topk_ids=topk_ids,
inplace=True,
use_fp8_w8a8=True,
w1_scale=layer.w13_weight_scale,
w2_scale=layer.w2_weight_scale,
w1_scale=(
layer.w13_weight_scale_inv
if self.block_quant
else layer.w13_weight_scale
),
w2_scale=(
layer.w2_weight_scale_inv if self.block_quant else layer.w2_weight_scale
),
a1_scale=layer.w13_input_scale,
a2_scale=layer.w2_input_scale,
block_shape=self.quant_config.weight_block_size,
)
......
from typing import List, Tuple
import torch
import triton
import triton.language as tl
@triton.jit
def _per_token_group_quant_fp8(
# Pointers to inputs and output
y_ptr,
y_q_ptr,
y_s_ptr,
# Stride of input
y_stride,
# Collums of input
N,
# Avoid to divide zero
eps,
# Information for float8
fp8_min,
fp8_max,
# Meta-parameters
BLOCK: tl.constexpr,
):
"""A Triton-accelerated function to perform per-token-group quantization on a
tensor.
This function converts the tensor values into float8 values.
"""
# Map the program id to the row of X and Y it should compute.
g_id = tl.program_id(0)
y_ptr += g_id * y_stride
y_q_ptr += g_id * y_stride
y_s_ptr += g_id
cols = tl.arange(0, BLOCK) # N <= BLOCK
mask = cols < N
y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
# Quant
_absmax = tl.maximum(tl.max(tl.abs(y)), eps)
y_s = _absmax / fp8_max
y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)
tl.store(y_q_ptr + cols, y_q, mask=mask)
tl.store(y_s_ptr, y_s)
def per_token_group_quant_fp8(
x: torch.Tensor,
group_size: int,
eps: float = 1e-10,
dtype: torch.dtype = torch.float8_e4m3fn,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Function to perform per-token-group quantization on an input tensor `x`.
It converts the tensor values into signed float8 values and returns the
quantized tensor along with the scaling factor used for quantization.
Args:
x: The input tenosr with ndim >= 2.
group_size: The group size used for quantization.
eps: The minimum to avoid dividing zero.
dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn` is supported for now.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the scaling factor for quantization.
"""
assert (
x.shape[-1] % group_size == 0
), "the last dimension of `x` cannot be divisible by `group_size`"
assert x.is_contiguous(), "`x` is not contiguous"
finfo = torch.finfo(dtype)
fp8_min = finfo.min
fp8_max = finfo.max
x_q = torch.empty_like(x, device=x.device, dtype=dtype)
M = x.numel() // group_size
N = group_size
x_s = torch.empty(
x.shape[:-1] + (x.shape[-1] // group_size,),
device=x.device,
dtype=torch.float32,
)
BLOCK = triton.next_power_of_2(N)
# heuristics for number of warps
num_warps = min(max(BLOCK // 256, 1), 8)
num_stages = 1
_per_token_group_quant_fp8[(M,)](
x,
x_q,
x_s,
group_size,
N,
eps,
fp8_min=fp8_min,
fp8_max=fp8_max,
BLOCK=BLOCK,
num_warps=num_warps,
num_stages=num_stages,
)
return x_q, x_s
@triton.jit
def _w8a8_block_fp8_matmul(
# Pointers to inputs and output
A,
B,
C,
As,
Bs,
# Shape for matmul
M,
N,
K,
# Block size for block-wise quantization
group_n,
group_k,
# Stride for inputs and output
stride_am,
stride_ak,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_As_m,
stride_As_k,
stride_Bs_k,
stride_Bs_n,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
):
"""Triton-accelerated function used to perform linear operations (dot
product) on input tensors `A` and `B` with block-wise quantization, and store the result in output
tensor `C`.
"""
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = A + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = B + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
As_ptrs = As + offs_am * stride_As_m
offs_bsn = offs_bn // group_n
Bs_ptrs = Bs + offs_bsn * stride_Bs_n
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
k_start = k * BLOCK_SIZE_K
offs_ks = k_start // group_k
a_s = tl.load(As_ptrs + offs_ks * stride_As_k)
b_s = tl.load(Bs_ptrs + offs_ks * stride_Bs_k)
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
if C.dtype.element_ty == tl.bfloat16:
c = accumulator.to(tl.bfloat16)
elif C.dtype.element_ty == tl.float16:
c = accumulator.to(tl.float16)
else:
c = accumulator.to(tl.float32)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = C + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
def w8a8_block_fp8_matmul(
A: torch.Tensor,
B: torch.Tensor,
As: torch.Tensor,
Bs: torch.Tensor,
block_size: List[int],
output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
"""This function performs matrix multiplication with block-wise quantization.
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
The output is returned in the specified `output_dtype`.
Args:
A: The input tensor, e.g., activation.
B: The input tensor, e.g., weight.
As: The per-token-group quantization scale for `A`.
Bs: The per-block quantization scale for `B`.
block_size: The block size for per-block quantization. It should be 2-dim, e.g., [128, 128].
output_dytpe: The dtype of the returned tensor.
Returns:
torch.Tensor: The result of matmul.
"""
assert len(block_size) == 2
block_n, block_k = block_size[0], block_size[1]
assert A.shape[-1] == B.shape[-1]
assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous()
assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1]
M = A.numel() // A.shape[-1]
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
N, K = B.shape
assert triton.cdiv(N, block_n) == Bs.shape[0]
assert triton.cdiv(K, block_k) == Bs.shape[1]
C_shape = A.shape[:-1] + (N,)
C = A.new_empty(C_shape, dtype=output_dtype)
# TODO(HandH1998):
# BLOCK_SIZE_M, BLOCK_SIZE_K, BLOCK_SIZE_N can be optimized.
# BLOCK_SIZE_K must be divisable by block_k
# BLOCK_SIZE_N and BLOCK_SIZE_M has no requirements
BLOCK_SIZE_M = 128
if M < BLOCK_SIZE_M:
BLOCK_SIZE_M = triton.next_power_of_2(M)
BLOCK_SIZE_M = max(BLOCK_SIZE_M, 16)
BLOCK_SIZE_K = block_k
assert block_k % BLOCK_SIZE_K == 0
BLOCK_SIZE_N = block_n
def grid(META):
return (
triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
)
_w8a8_block_fp8_matmul[grid](
A,
B,
C,
As,
Bs,
M,
N,
K,
block_n,
block_k,
A.stride(-2),
A.stride(-1),
B.stride(1),
B.stride(0),
C.stride(-2),
C.stride(-1),
As.stride(-2),
As.stride(-1),
Bs.stride(1),
Bs.stride(0),
BLOCK_SIZE_M=BLOCK_SIZE_M,
BLOCK_SIZE_N=BLOCK_SIZE_N,
BLOCK_SIZE_K=BLOCK_SIZE_K,
GROUP_SIZE_M=8,
)
return C
from typing import Optional, Tuple
from typing import List, Optional, Tuple
import torch
from vllm.model_executor.parameter import RowvLLMParameter, _ColumnvLLMParameter
from sglang.srt.layers.quantization.fp8_kernel import (
per_token_group_quant_fp8,
w8a8_block_fp8_matmul,
)
def normalize_e4m3fn_to_e4m3fnuz(
......@@ -25,3 +31,86 @@ def normalize_e4m3fn_to_e4m3fnuz(
if input_scale is not None:
input_scale = input_scale * 2.0
return weight, weight_scale, input_scale
def apply_w8a8_block_fp8_linear(
input: torch.Tensor,
weight: torch.Tensor,
block_size: List[int],
weight_scale: torch.Tensor,
input_scale: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
assert input_scale is None
# View input as 2D matrix for fp8 methods
input_2d = input.view(-1, input.shape[-1])
output_shape = [*input.shape[:-1], weight.shape[0]]
q_input, x_scale = per_token_group_quant_fp8(input_2d, block_size[1])
output = w8a8_block_fp8_matmul(
q_input, weight, x_scale, weight_scale, block_size, output_dtype=input.dtype
)
if bias is not None:
output = output + bias
return output.to(dtype=input.dtype).view(*output_shape)
def input_to_float8(
x: torch.Tensor, dtype: torch.dtype = torch.float8_e4m3fn
) -> Tuple[torch.Tensor, torch.Tensor]:
"""This function quantizes input values to float8 values with tensor-wise quantization."""
finfo = torch.finfo(dtype)
min_val, max_val = x.aminmax()
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
scale = finfo.max / amax
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()
def block_quant_to_tensor_quant(
x_q_block: torch.Tensor,
x_s: torch.Tensor,
block_size: List[int],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""This function converts block-wise quantization to tensor-wise quantization.
The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
and the block size.
The outputs are tensor-wise quantization tensor and tensor-wise quantization scale.
Note only float8 is supported for now.
"""
block_n, block_k = block_size[0], block_size[1]
n, k = x_q_block.shape
n_tiles = (n + block_n - 1) // block_n
k_tiles = (k + block_k - 1) // block_k
assert n_tiles == x_s.shape[0]
assert k_tiles == x_s.shape[1]
x_dq_block = x_q_block.to(torch.float32)
x_dq_block_tiles = [
[
x_dq_block[
j * block_n : min((j + 1) * block_n, n),
i * block_k : min((i + 1) * block_k, k),
]
for i in range(k_tiles)
]
for j in range(n_tiles)
]
for i in range(k_tiles):
for j in range(n_tiles):
x_dq_block_tiles[j][i][:, :] = x_dq_block_tiles[j][i] * x_s[j][i]
x_q_tensor, scale = input_to_float8(x_dq_block, dtype=x_q_block.dtype)
return x_q_tensor, scale
class BlockQuantScaleParameter(_ColumnvLLMParameter, RowvLLMParameter):
"""
Parameter class for weight scales loaded for weights with
block-wise quantization. Uses both column and row parallelism.
"""
pass
......@@ -43,6 +43,10 @@ from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.moe.ep_moe.layer import EPMoE
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.quantization.fp8_utils import (
block_quant_to_tensor_quant,
input_to_float8,
)
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
......@@ -186,15 +190,6 @@ def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
return 0.1 * mscale * math.log(scale) + 1.0
def input_to_float8(x, dtype=torch.float8_e4m3fn):
finfo = torch.finfo(dtype)
min_val, max_val = x.aminmax()
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
scale = finfo.max / amax
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()
class DeepseekV2Attention(nn.Module):
def __init__(
......@@ -869,6 +864,16 @@ class DeepseekV2ForCausalLM(nn.Module):
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
# TODO(HandH1998): Modify it when nextn is supported.
if hasattr(self.config, "num_nextn_predict_layers"):
num_nextn_layers = self.config.num_nextn_predict_layers
if num_nextn_layers > 0 and name.startswith("model.layers"):
name_list = name.split(".")
if (
len(name_list) >= 3
and int(name_list[2]) >= self.config.num_hidden_layers
):
continue
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
......@@ -933,13 +938,33 @@ class DeepseekV2ForCausalLM(nn.Module):
).T
else:
w = self_attn.kv_b_proj.weight
# NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
# This may affect the accuracy of fp8 model.
if (
hasattr(self.quant_config, "weight_block_size")
and w.dtype == torch.float8_e4m3fn
):
weight_block_size = self.quant_config.weight_block_size
if weight_block_size is not None:
assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
w, scale = block_quant_to_tensor_quant(
w, self_attn.kv_b_proj.weight_scale_inv, weight_block_size
)
self_attn.w_scale = scale
w_kc, w_vc = w.unflatten(
0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
if hasattr(self_attn.kv_b_proj, "weight_scale"):
if (
hasattr(self_attn.kv_b_proj, "weight_scale")
and self_attn.w_scale is None
):
self_attn.w_scale = self_attn.kv_b_proj.weight_scale
EntryClass = DeepseekV2ForCausalLM
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
pass
EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]
import itertools
import unittest
import torch
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_moe
from sglang.srt.layers.quantization.fp8_kernel import (
per_token_group_quant_fp8,
w8a8_block_fp8_matmul,
)
# For test
def native_per_token_group_quant_fp8(
x, group_size, eps=1e-10, dtype=torch.float8_e4m3fn
):
"""Function to perform per-token-group quantization on an input tensor `x` using native torch.
It converts the tensor values into float8 values and returns the
quantized tensor along with the scaling factor used for quantization.
Note that only `torch.float8_e4m3fn` is supported for now.
"""
assert (
x.shape[-1] % group_size == 0
), "the last dimension of `x` cannot be divisible by `group_size`"
assert x.is_contiguous(), "`x` is not contiguous"
finfo = torch.finfo(dtype)
fp8_min = finfo.min
fp8_max = finfo.max
x_ = x.reshape(x.numel() // group_size, group_size)
amax = x_.abs().max(dim=-1, keepdim=True)[0].clamp(min=eps).to(torch.float32)
x_s = amax / fp8_max
x_q = (x_ / x_s).clamp(min=fp8_min, max=fp8_max).to(dtype)
x_q = x_q.reshape(x.shape)
x_s = x_s.reshape(x.shape[:-1] + (x.shape[-1] // group_size,))
return x_q, x_s
class TestPerTokenGroupQuantFP8(unittest.TestCase):
DTYPES = [torch.half, torch.bfloat16, torch.float32]
NUM_TOKENS = [7, 83, 2048]
D = [512, 4096, 5120, 13824]
GROUP_SIZE = [64, 128, 256, 512]
SEEDS = [0]
@classmethod
def setUpClass(cls):
if not torch.cuda.is_available():
raise unittest.SkipTest("CUDA is not available")
torch.set_default_device("cuda")
def _per_token_group_quant_fp8(self, num_tokens, d, dtype, group_size, seed):
torch.manual_seed(seed)
x = torch.rand(num_tokens, d, dtype=dtype)
with torch.inference_mode():
ref_out, ref_scale = native_per_token_group_quant_fp8(x, group_size)
out, scale = per_token_group_quant_fp8(x, group_size)
self.assertTrue(
torch.allclose(out.to(torch.float32), ref_out.to(torch.float32), rtol=0.15)
)
self.assertTrue(torch.allclose(scale, ref_scale))
def test_per_token_group_quant_fp8(self):
for params in itertools.product(
self.NUM_TOKENS,
self.D,
self.DTYPES,
self.GROUP_SIZE,
self.SEEDS,
):
with self.subTest(
num_tokens=params[0],
d=params[1],
dtype=params[2],
group_size=params[3],
seed=params[4],
):
self._per_token_group_quant_fp8(*params)
# For test
def native_w8a8_block_fp8_matmul(A, B, As, Bs, block_size, output_dtype=torch.float16):
"""This function performs matrix multiplication with block-wise quantization using native torch.
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
The output is returned in the specified `output_dtype`.
"""
A = A.to(torch.float32)
B = B.to(torch.float32)
assert A.shape[-1] == B.shape[-1]
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
assert len(block_size) == 2
block_n, block_k = block_size[0], block_size[1]
assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1]
assert A.shape[:-1] == As.shape[:-1]
M = A.numel() // A.shape[-1]
N, K = B.shape
origin_C_shape = A.shape[:-1] + (N,)
A = A.reshape(M, A.shape[-1])
As = As.reshape(M, As.shape[-1])
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
assert n_tiles == Bs.shape[0]
assert k_tiles == Bs.shape[1]
C_shape = (M, N)
C = torch.zeros(C_shape, dtype=torch.float32, device=A.device)
A_tiles = [A[:, i * block_k : min((i + 1) * block_k, K)] for i in range(k_tiles)]
B_tiles = [
[
B[
j * block_n : min((j + 1) * block_n, N),
i * block_k : min((i + 1) * block_k, K),
]
for i in range(k_tiles)
]
for j in range(n_tiles)
]
C_tiles = [C[:, j * block_n : min((j + 1) * block_n, N)] for j in range(n_tiles)]
As_tiles = [As[:, i : i + 1] for i in range(k_tiles)]
for i in range(k_tiles):
for j in range(n_tiles):
a = A_tiles[i]
b = B_tiles[j][i]
c = C_tiles[j]
s = As_tiles[i] * Bs[j][i]
c[:, :] += torch.matmul(a, b.t()) * s
C = C.reshape(origin_C_shape).to(output_dtype)
return C
class TestW8A8BlockFP8Matmul(unittest.TestCase):
OUT_DTYPES = [torch.float32, torch.half, torch.bfloat16]
M = [1, 7, 83, 512, 2048]
N = [128, 512, 1024, 4096, 7748, 13824]
K = [256, 4096, 5120, 3884, 13824]
# BLOCK_SIZE = [[64, 64], [64, 128], [128, 64], [128, 128]]
BLOCK_SIZE = [[128, 128]]
SEEDS = [0]
@classmethod
def setUpClass(cls):
if not torch.cuda.is_available():
raise unittest.SkipTest("CUDA is not available")
torch.set_default_device("cuda")
def _w8a8_block_fp8_matmul(self, M, N, K, block_size, out_dtype, seed):
torch.manual_seed(seed)
# NOTE(HandH1998): to avoid overflow when out_dtype = torch.half
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
A_fp32 = (torch.rand(M, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
A_fp8 = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
B_fp32 = (torch.rand(N, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
B_fp8 = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
As = torch.rand(M, k_tiles, dtype=torch.float32) * factor_for_scale
Bs = torch.rand(n_tiles, k_tiles, dtype=torch.float32) * factor_for_scale
with torch.inference_mode():
ref_out = native_w8a8_block_fp8_matmul(
A_fp8, B_fp8, As, Bs, block_size, out_dtype
)
out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
self.assertTrue(
torch.mean(torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)))
/ torch.mean(torch.abs(ref_out.to(torch.float32)))
< 0.001
)
def test_w8a8_block_fp8_matmul(self):
for params in itertools.product(
self.M,
self.N,
self.K,
self.BLOCK_SIZE,
self.OUT_DTYPES,
self.SEEDS,
):
with self.subTest(
M=params[0],
N=params[1],
K=params[2],
block_size=params[3],
out_dtype=params[4],
seed=params[5],
):
self._w8a8_block_fp8_matmul(*params)
# For test
def torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape):
"""This function performs fused moe with block-wise quantization using native torch."""
B, D = a.shape
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
score = torch.softmax(score, dim=-1, dtype=torch.float32)
topk_weight, topk_ids = torch.topk(score, topk)
topk_weight = topk_weight.view(-1)
topk_ids = topk_ids.view(-1)
_, block_k = block_shape[0], block_shape[1]
a_q, a_s = native_per_token_group_quant_fp8(a, block_k)
# NOTE(HandH1998): Since "index_cuda" not implemented for 'Float8_e4m3fn', we need to cast `float8`` to `float32``.
a_q = a_q.to(torch.float32)
for i in range(w1.shape[0]):
mask = topk_ids == i
if mask.sum():
inter_out = native_w8a8_block_fp8_matmul(
a_q[mask], w1[i], a_s[mask], w1_s[i], block_shape, output_dtype=a.dtype
)
act_out = SiluAndMul().forward_native(inter_out)
act_out_q, act_out_s = native_per_token_group_quant_fp8(act_out, block_k)
act_out = act_out.to(torch.float32)
out[mask] = native_w8a8_block_fp8_matmul(
act_out_q, w2[i], act_out_s, w2_s[i], block_shape, output_dtype=a.dtype
)
return (
out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)
).sum(dim=1)
class TestW8A8BlockFP8FusedMoE(unittest.TestCase):
DTYPES = [torch.float32, torch.half, torch.bfloat16]
M = [1, 33, 64, 222, 1024 * 128]
N = [128, 1024, 2048]
K = [256, 4096, 5120]
E = [8, 24]
TOP_KS = [2, 6]
BLOCK_SIZE = [[64, 64], [64, 128], [128, 64], [128, 128]]
# BLOCK_SIZE = [[128, 128]]
SEEDS = [0]
@classmethod
def setUpClass(cls):
if not torch.cuda.is_available():
raise unittest.SkipTest("CUDA is not available")
torch.set_default_device("cuda")
def _w8a8_block_fp8_fused_moe(self, M, N, K, E, topk, block_size, dtype, seed):
torch.manual_seed(seed)
# NOTE(HandH1998): to avoid overflow when out_dtype = torch.half
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
a = torch.randn((M, K), dtype=dtype) / 10
w1_fp32 = (torch.rand((E, 2 * N, K), dtype=torch.float32) - 0.5) * 2 * fp8_max
w1 = w1_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
w2_fp32 = (torch.rand((E, K, N), dtype=torch.float32) - 0.5) * 2 * fp8_max
w2 = w2_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
block_n, block_k = block_size[0], block_size[1]
n_tiles_w1 = (2 * N + block_n - 1) // block_n
n_tiles_w2 = (K + block_n - 1) // block_n
k_tiles_w1 = (K + block_k - 1) // block_k
k_tiles_w2 = (N + block_k - 1) // block_k
w1_s = (
torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32)
* factor_for_scale
)
w2_s = (
torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32)
* factor_for_scale
)
score = torch.randn((M, E), dtype=dtype)
with torch.inference_mode():
out = fused_moe(
a,
w1,
w2,
score,
topk,
renormalize=False,
use_fp8_w8a8=True,
w1_scale=w1_s,
w2_scale=w2_s,
block_shape=block_size,
)
ref_out = torch_w8a8_block_fp8_moe(
a, w1, w2, w1_s, w2_s, score, topk, block_size
)
self.assertTrue(
torch.mean(torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)))
/ torch.mean(torch.abs(ref_out.to(torch.float32)))
< 0.02
)
def test_w8a8_block_fp8_fused_moe(self):
for params in itertools.product(
self.M,
self.N,
self.K,
self.E,
self.TOP_KS,
self.BLOCK_SIZE,
self.DTYPES,
self.SEEDS,
):
with self.subTest(
M=params[0],
N=params[1],
K=params[2],
E=params[3],
topk=params[4],
block_size=params[5],
dtype=params[6],
seed=params[7],
):
self._w8a8_block_fp8_fused_moe(*params)
if __name__ == "__main__":
unittest.main(verbosity=2)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment