Unverified Commit 4ae0969c authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Move status check in the memory pool to CPU (#1557)

parent 317631ca
......@@ -19,6 +19,7 @@ import logging
from abc import ABC, abstractmethod
from typing import List, Tuple, Union
import numpy as np
import torch
logger = logging.getLogger(__name__)
......@@ -69,56 +70,27 @@ class BaseTokenToKVPool(ABC):
else:
self.store_dtype = dtype
# We also add one slot. This slot is used for writing dummy output from padded tokens.
self.mem_state = torch.ones((self.size + 1,), dtype=torch.bool, device="cuda")
# Prefetch buffer
self.prefetch_buffer = torch.empty(0, device="cuda", dtype=torch.int32)
self.prefetch_chunk_size = 512
self.can_use_mem_size = self.size
self.free_slots = None
self.clear()
def available_size(self):
return self.can_use_mem_size + len(self.prefetch_buffer)
return len(self.free_slots)
def alloc(self, need_size: int):
buffer_len = len(self.prefetch_buffer)
if need_size <= buffer_len:
select_index = self.prefetch_buffer[:need_size]
self.prefetch_buffer = self.prefetch_buffer[need_size:]
return select_index
addition_size = need_size - buffer_len
alloc_size = max(addition_size, self.prefetch_chunk_size)
select_index = (
torch.nonzero(self.mem_state).squeeze(1)[:alloc_size].to(torch.int32)
)
if select_index.shape[0] < addition_size:
if need_size > len(self.free_slots):
return None
self.mem_state[select_index] = False
self.can_use_mem_size -= len(select_index)
self.prefetch_buffer = torch.cat((self.prefetch_buffer, select_index))
ret_index = self.prefetch_buffer[:need_size]
self.prefetch_buffer = self.prefetch_buffer[need_size:]
select_index = self.free_slots[:need_size]
self.free_slots = self.free_slots[need_size:]
return ret_index
return torch.tensor(select_index, dtype=torch.int32, device="cuda")
def free(self, free_index: torch.Tensor):
self.mem_state[free_index] = True
self.can_use_mem_size += len(free_index)
self.free_slots = np.concatenate((self.free_slots, free_index.cpu().numpy()))
def clear(self):
self.prefetch_buffer = torch.empty(0, device="cuda", dtype=torch.int32)
self.mem_state.fill_(True)
self.can_use_mem_size = self.size
# We also add one slot. This slot is used for writing dummy output from padded tokens.
self.mem_state[0] = False
# The padded slot 0 is used for writing dummy outputs from padded tokens.
self.free_slots = np.arange(1, self.size + 1)
@abstractmethod
def get_key_buffer(self, layer_id: int) -> torch.Tensor:
......@@ -152,19 +124,25 @@ class MHATokenToKVPool(BaseTokenToKVPool):
head_num: int,
head_dim: int,
layer_num: int,
device: str,
):
super().__init__(size, dtype)
# [size, head_num, head_dim] for each layer
# The padded slot 0 is used for writing dummy outputs from padded tokens.
self.k_buffer = [
torch.empty(
(size + 1, head_num, head_dim), dtype=self.store_dtype, device="cuda"
(size + 1, head_num, head_dim),
dtype=self.store_dtype,
device=device,
)
for _ in range(layer_num)
]
self.v_buffer = [
torch.empty(
(size + 1, head_num, head_dim), dtype=self.store_dtype, device="cuda"
(size + 1, head_num, head_dim),
dtype=self.store_dtype,
device=device,
)
for _ in range(layer_num)
]
......@@ -210,15 +188,17 @@ class MLATokenToKVPool(BaseTokenToKVPool):
kv_lora_rank: int,
qk_rope_head_dim: int,
layer_num: int,
device: str,
):
super().__init__(size, dtype)
self.kv_lora_rank = kv_lora_rank
# The padded slot 0 is used for writing dummy outputs from padded tokens.
self.kv_buffer = [
torch.empty(
(size + 1, 1, kv_lora_rank + qk_rope_head_dim),
dtype=self.store_dtype,
device="cuda",
device=device,
)
for _ in range(layer_num)
]
......
......@@ -409,8 +409,11 @@ class ModelRunner:
4096,
)
device = "cuda"
self.req_to_token_pool = ReqToTokenPool(
max_num_reqs + 1, self.model_config.context_len + 4, device="cuda"
max_num_reqs + 1,
self.model_config.context_len + 4,
device=device,
)
if (
self.model_config.attention_arch == AttentionArch.MLA
......@@ -422,6 +425,7 @@ class ModelRunner:
kv_lora_rank=self.model_config.kv_lora_rank,
qk_rope_head_dim=self.model_config.qk_rope_head_dim,
layer_num=self.model_config.num_hidden_layers,
device=device,
)
else:
self.token_to_kv_pool = MHATokenToKVPool(
......@@ -430,6 +434,7 @@ class ModelRunner:
head_num=self.model_config.get_num_kv_heads(self.tp_size),
head_dim=self.model_config.head_dim,
layer_num=self.model_config.num_hidden_layers,
device=device,
)
logger.info(
f"Memory pool end. "
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment