Commit 46da9556 authored by maxiao1's avatar maxiao1
Browse files

Merge branch 'v0.5.4_dev_linhai' into 'v0.5.4_dev'

V0.5.4 dev linhai

See merge request OpenDAS/sglang!9
parents a9e0e668 ee775772
......@@ -99,7 +99,6 @@ def create_triton_backend(runner):
return TritonAttnBackend(runner)
@register_attention_backend("torch_native")
def create_torch_native_backend(runner):
from sglang.srt.layers.attention.torch_native_backend import TorchNativeAttnBackend
......@@ -120,6 +119,11 @@ def create_flashmla_backend(runner):
return FlashMLABackend(runner)
@register_attention_backend("dcu_mla")
def create_dcu_mla_backend(runner):
from sglang.srt.layers.attention.dcu_mla_backend import DCUMLABackend
return DCUMLABackend(runner)
@register_attention_backend("fa3")
def create_flashattention_v3_backend(runner):
......
from __future__ import annotations
from dataclasses import dataclass
from typing import TYPE_CHECKING, Optional, Tuple, Union
import torch
import triton
from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
from sglang.srt.layers.attention.utils import create_flashmla_kv_indices_triton
from sglang.srt.layers.dp_attention import get_attention_tp_size
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
try:
from flash_mla import (
flash_mla_with_kvcache,
flash_mla_with_kvcache_quantization,
get_mla_metadata
)
_has_flash_mla = True
except Exception:
try:
from vllm.attention.ops.flashmla import (
flash_mla_with_kvcache,
get_mla_metadata
)
_has_flash_mla = False
except Exception:
raise ImportError(
"Can not import FlashMLA。Please perform the following operations to use flashmla:\n"
" pip install flash-mla\n"
" or\n"
" pip install vllm"
)
PAGE_SIZE = 64 # 强制64
if TYPE_CHECKING:
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.speculative.spec_info import SpecInput
@dataclass
class VllmMLADecodeMetadata:
flashmla_metadata: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
num_splits: Optional[torch.Tensor] = None
block_kv_indices: Optional[torch.Tensor] = None
class DCUMLABackend(AttentionBackend):
def __init__(
self,
model_runner: "ModelRunner",
skip_prefill: bool = False,
kv_indptr_buf: Optional[torch.Tensor] = None,
kv_last_page_len_buf: Optional[torch.Tensor] = None,
):
super().__init__()
if model_runner.server_args.page_size != PAGE_SIZE:
raise ValueError(
f"dcu_mla backend requires page_size={PAGE_SIZE}, "
f"but got the {model_runner.server_args.page_size}"
)
self.num_q_heads = (
model_runner.model_config.num_attention_heads // get_attention_tp_size()
)
self.req_to_token = model_runner.req_to_token_pool.req_to_token
self.kv_lora_rank = model_runner.model_config.kv_lora_rank
self.qk_nope_head_dim = model_runner.model_config.qk_nope_head_dim
self.qk_rope_head_dim = model_runner.model_config.qk_rope_head_dim
self.v_head_dim = model_runner.model_config.v_head_dim
self.kv_cache_dim = self.kv_lora_rank + self.qk_rope_head_dim
self.data_type = model_runner.kv_cache_dtype
self.q_data_type = model_runner.dtype
self.device = model_runner.device
self.max_context_len = model_runner.model_config.context_len
self.num_draft_tokens = model_runner.server_args.speculative_num_draft_tokens
self.forward_metadata: Union[VllmMLADecodeMetadata] = None
self.skip_prefill = skip_prefill
if not skip_prefill:
# 先用triton backend,后面考虑替换
# from sglang.srt.layers.attention.triton_backend import TritonAttnBackend
# self.triton_backend = TritonAttnBackend(
# model_runner,
# skip_prefill=False,
# kv_indptr_buf=kv_indptr_buf,
# )
# prefill改用flash attn
from sglang.srt.layers.attention.flashattention_backend import FlashAttentionBackend
self.flashattn_backend = FlashAttentionBackend(
model_runner,
skip_prefill=False,
)
def _build_decode_metadata(
self,
forward_batch: ForwardBatch,
seq_lens: torch.Tensor
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
bs = forward_batch.batch_size
max_seqlen_pad = triton.cdiv(seq_lens.max().item(), PAGE_SIZE)
# 参考vllm官方博客分页
block_kv_indices = torch.full(
(bs, max_seqlen_pad), -1, dtype=torch.int32, device=seq_lens.device
)
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
forward_batch.req_pool_indices,
seq_lens,
None,
block_kv_indices,
self.req_to_token.stride(0),
max_seqlen_pad,
)
mla_metadata, num_splits = get_mla_metadata(
seq_lens.to(torch.int32), self.num_q_heads, 1
)
return (mla_metadata, num_splits), num_splits, block_kv_indices
def init_forward_metadata(self, forward_batch: ForwardBatch):
if forward_batch.forward_mode.is_decode_or_idle():
# decode用flashmla
(mla_metadata, num_splits), num_splits_t, block_kv_indices = (
self._build_decode_metadata(forward_batch, forward_batch.seq_lens)
)
self.forward_metadata = VllmMLADecodeMetadata(
mla_metadata, num_splits_t, block_kv_indices
)
elif forward_batch.forward_mode.is_target_verify():
seq_lens = forward_batch.seq_lens + self.num_draft_tokens
(mla_metadata, num_splits), num_splits_t, block_kv_indices = (
self._build_decode_metadata(forward_batch, seq_lens)
)
self.forward_metadata = VllmMLADecodeMetadata(
mla_metadata, num_splits_t, block_kv_indices
)
else:
# prefill/extend用triton backend -> 改用flash attn
if not self.skip_prefill:
# self.triton_backend.init_forward_metadata(forward_batch)
self.flashattn_backend.init_forward_metadata(forward_batch)
def init_cuda_graph_state(
self,
max_bs: int,
max_num_tokens: int,
block_kv_indices: Optional[torch.Tensor] = None,
):
if block_kv_indices is None:
cuda_graph_kv_indices = torch.full(
(max_bs, (self.max_context_len + PAGE_SIZE) // PAGE_SIZE),
1,
dtype=torch.int32,
device="cuda",
)
else:
cuda_graph_kv_indices = block_kv_indices
if self.num_draft_tokens:
mla_metadata, num_splits = get_mla_metadata(
torch.ones(max_bs, dtype=torch.int32, device=cuda_graph_kv_indices.device),
self.num_draft_tokens * self.num_q_heads,
1,
)
else:
mla_metadata, num_splits = get_mla_metadata(
torch.ones(max_bs, dtype=torch.int32, device=cuda_graph_kv_indices.device),
self.num_q_heads,
1,
)
self.cuda_graph_mla_metadata = mla_metadata
self.cuda_graph_num_splits = num_splits
self.cuda_graph_kv_indices = cuda_graph_kv_indices
def init_forward_metadata_capture_cuda_graph(
self,
bs: int,
num_tokens: int,
req_pool_indices: torch.Tensor,
seq_lens: torch.Tensor,
encoder_lens: Optional[torch.Tensor],
forward_mode: ForwardMode,
spec_info: Optional["SpecInput"],
):
if forward_mode.is_decode_or_idle():
max_seqlen_pad = triton.cdiv(seq_lens.max().item(), PAGE_SIZE)
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
req_pool_indices,
seq_lens,
None,
self.cuda_graph_kv_indices,
self.req_to_token.stride(0),
self.cuda_graph_kv_indices.stride(0),
)
num_q_heads = self.num_q_heads * (self.num_draft_tokens or 1)
mla_metadata, num_splits = get_mla_metadata(
seq_lens.to(torch.int32), num_q_heads, 1
)
self.cuda_graph_mla_metadata.copy_(mla_metadata)
self.cuda_graph_num_splits[: bs + 1].copy_(num_splits)
self.forward_metadata = VllmMLADecodeMetadata(
self.cuda_graph_mla_metadata,
self.cuda_graph_num_splits[: bs + 1],
self.cuda_graph_kv_indices[:bs, :max_seqlen_pad],
)
elif forward_mode.is_target_verify():
seq_lens = seq_lens + self.num_draft_tokens
max_seqlen_pad = triton.cdiv(seq_lens.max().item(), PAGE_SIZE)
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
req_pool_indices,
seq_lens,
None,
self.cuda_graph_kv_indices,
self.req_to_token.stride(0),
self.cuda_graph_kv_indices.stride(0),
)
mla_metadata, num_splits = get_mla_metadata(
seq_lens.to(torch.int32), self.num_draft_tokens * self.num_q_heads, 1
)
self.cuda_graph_mla_metadata.copy_(mla_metadata)
self.cuda_graph_num_splits[: bs + 1].copy_(num_splits)
self.forward_metadata = VllmMLADecodeMetadata(
self.cuda_graph_mla_metadata,
self.cuda_graph_num_splits[: bs + 1],
self.cuda_graph_kv_indices[:bs, :max_seqlen_pad],
)
else:
if not self.skip_prefill:
# self.triton_backend.init_forward_metadata_capture_cuda_graph(
# bs,
# num_tokens,
# req_pool_indices,
# seq_lens,
# encoder_lens,
# forward_mode,
# spec_info,
# )
self.flashattn_backend.init_forward_metadata_capture_cuda_graph(
bs,
num_tokens,
req_pool_indices,
seq_lens,
encoder_lens,
forward_mode,
spec_info,
)
def init_forward_metadata_replay_cuda_graph(
self,
bs: int,
req_pool_indices: torch.Tensor,
seq_lens: torch.Tensor,
seq_lens_sum: int,
encoder_lens: Optional[torch.Tensor],
forward_mode: ForwardMode,
spec_info: Optional["SpecInput"],
seq_lens_cpu: Optional[torch.Tensor],
):
if forward_mode.is_decode_or_idle():
assert seq_lens_cpu is not None
seq_lens = seq_lens[:bs]
seq_lens_cpu = seq_lens_cpu[:bs]
max_seqlen_pad = triton.cdiv(seq_lens_cpu.max().item(), PAGE_SIZE)
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
req_pool_indices[:bs],
seq_lens,
None,
self.cuda_graph_kv_indices,
self.req_to_token.stride(0),
self.cuda_graph_kv_indices.stride(0),
)
num_q_heads = self.num_q_heads * (self.num_draft_tokens or 1)
mla_metadata, num_splits = get_mla_metadata(
seq_lens.to(torch.int32), num_q_heads, 1
)
self.cuda_graph_mla_metadata.copy_(mla_metadata)
self.cuda_graph_num_splits[: bs + 1].copy_(num_splits)
self.forward_metadata.flashmla_metadata = self.cuda_graph_mla_metadata
self.forward_metadata.num_splits = self.cuda_graph_num_splits[: bs + 1]
self.forward_metadata.block_kv_indices = self.cuda_graph_kv_indices[
:bs, :max_seqlen_pad
]
elif forward_mode.is_target_verify():
seq_lens = seq_lens[:bs] + self.num_draft_tokens
seq_lens_cpu = seq_lens_cpu[:bs] + self.num_draft_tokens
max_seqlen_pad = triton.cdiv(seq_lens_cpu.max().item(), PAGE_SIZE)
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
req_pool_indices[:bs],
seq_lens,
None,
self.cuda_graph_kv_indices,
self.req_to_token.stride(0),
self.cuda_graph_kv_indices.stride(0),
)
mla_metadata, num_splits = get_mla_metadata(
seq_lens.to(torch.int32), self.num_draft_tokens * self.num_q_heads, 1
)
self.cuda_graph_mla_metadata.copy_(mla_metadata)
self.cuda_graph_num_splits[: bs + 1].copy_(num_splits)
self.forward_metadata.flashmla_metadata = self.cuda_graph_mla_metadata
self.forward_metadata.num_splits = self.cuda_graph_num_splits[: bs + 1]
self.forward_metadata.block_kv_indices = self.cuda_graph_kv_indices[
:bs, :max_seqlen_pad
]
else:
if not self.skip_prefill:
# self.triton_backend.init_forward_metadata_replay_cuda_graph(
# bs,
# req_pool_indices,
# seq_lens,
# seq_lens_sum,
# encoder_lens,
# forward_mode,
# spec_info,
# seq_lens_cpu,
# )
self.flashattn_backend.init_forward_metadata_replay_cuda_graph(
bs,
req_pool_indices,
seq_lens,
seq_lens_sum,
encoder_lens,
forward_mode,
spec_info,
seq_lens_cpu,
)
def get_cuda_graph_seq_len_fill_value(self):
return 1
def _call_decode(self, reshape_q: torch.Tensor, k_cache_reshaped: torch.Tensor,
block_table: torch.Tensor, cache_seqlens: torch.Tensor,
scaling: float):
o, _ = flash_mla_with_kvcache(
q=reshape_q,
k_cache=k_cache_reshaped,
block_table=block_table,
cache_seqlens=cache_seqlens,
head_dim_v=self.kv_lora_rank,
tile_scheduler_metadata=self.forward_metadata.flashmla_metadata,
num_splits=self.forward_metadata.num_splits,
softmax_scale=scaling,
causal=True,
)
return o
def _call_fp8_decode(self, reshape_q: torch.Tensor, k_cache_reshaped: torch.Tensor,
block_table: torch.Tensor, cache_seqlens: torch.Tensor,
scaling: float):
assert _has_flash_mla, "FP8 KV cache 需要flash_mla包"
o, _ = flash_mla_with_kvcache_quantization(
q=reshape_q,
k_cache=k_cache_reshaped,
block_table=block_table,
cache_seqlens=cache_seqlens,
head_dim_v=self.kv_lora_rank,
tile_scheduler_metadata=self.forward_metadata.flashmla_metadata,
num_splits=self.forward_metadata.num_splits,
softmax_scale=scaling,
causal=True,
is_fp8_kvcache=True,
)
return o
def forward_decode(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
layer: "RadixAttention",
forward_batch: ForwardBatch,
save_kv_cache: bool = True,
):
cache_loc = forward_batch.out_cache_loc
if k is not None:
assert v is not None
if save_kv_cache:
forward_batch.token_to_kv_pool.set_kv_buffer(
layer,
cache_loc,
k,
v,
)
bs = forward_batch.batch_size
k_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id)
reshape_q = q.view(bs, -1, layer.tp_q_head_num, layer.head_dim)
k_cache_reshaped = k_cache.view(-1, PAGE_SIZE, 1, self.kv_cache_dim)
if self.data_type in (
getattr(torch, "float8_e4m3fn", None),
getattr(torch, "float8_e4m3fnuz", None),
getattr(torch, "float8_e5m2", None),
getattr(torch, "float8_e5m2fnuz", None),
):
o = self._call_fp8_decode(
reshape_q, k_cache_reshaped, self.forward_metadata.block_kv_indices[:bs],
forward_batch.seq_lens.to(torch.int32), layer.scaling,
)
else:
o = self._call_decode(
reshape_q, k_cache_reshaped, self.forward_metadata.block_kv_indices[:bs],
forward_batch.seq_lens.to(torch.int32), layer.scaling,
)
return o.view(-1, layer.tp_q_head_num * layer.v_head_dim)
def forward_extend(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
layer: "RadixAttention",
forward_batch: ForwardBatch,
save_kv_cache: bool = True,
sinks=None,
):
if (
forward_batch.forward_mode == ForwardMode.EXTEND
or forward_batch.forward_mode == ForwardMode.DRAFT_EXTEND
):
# flash_attn不支持fp8,fp8无法正常执行extend
if not self.skip_prefill:
# return self.triton_backend.forward_extend(
# q, k, v, layer, forward_batch, save_kv_cache, sinks
# )
return self.flashattn_backend.forward_extend(
q, k, v, layer, forward_batch, save_kv_cache, sinks
)
else:
raise RuntimeError("skip prefill but use forward_extend")
cache_loc = forward_batch.out_cache_loc
if k is not None:
assert v is not None
if save_kv_cache:
forward_batch.token_to_kv_pool.set_kv_buffer(layer, cache_loc, k, v)
bs = forward_batch.batch_size
k_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id)
reshape_q = q.view(bs, -1, layer.tp_q_head_num, layer.head_dim)
k_cache_reshaped = k_cache.view(-1, PAGE_SIZE, 1, self.kv_cache_dim)
if self.data_type in (
getattr(torch, "float8_e4m3fn", None),
getattr(torch, "float8_e4m3fnuz", None),
getattr(torch, "float8_e5m2", None),
getattr(torch, "float8_e5m2fnuz", None),
):
o = self._call_fp8_decode(
reshape_q, k_cache_reshaped, self.forward_metadata.block_kv_indices[:bs],
(forward_batch.seq_lens + self.num_draft_tokens).to(torch.int32),
layer.scaling,
)
else:
o = self._call_decode(
reshape_q, k_cache_reshaped, self.forward_metadata.block_kv_indices[:bs],
(forward_batch.seq_lens + self.num_draft_tokens).to(torch.int32),
layer.scaling,
)
return o.view(-1, layer.tp_q_head_num * layer.v_head_dim)
......@@ -9,7 +9,8 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
# from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
from sglang.srt.layers.attention.flashattention_interface import flash_attn_varlen_func, flash_attn_with_kvcache
from sgl_kernel.sparse_flash_attn import (
convert_vertical_slash_indexes,
convert_vertical_slash_indexes_mergehead,
......
......@@ -20,7 +20,8 @@ if TYPE_CHECKING:
from sglang.srt.model_executor.model_runner import ModelRunner
from sgl_kernel import merge_state_v2
from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
# from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
from sglang.srt.layers.attention.flashattention_interface import flash_attn_varlen_func, flash_attn_with_kvcache
@dataclass
......
from flash_attn import (
flash_attn_varlen_func as flash_attn_varlen_func_interface,
flash_attn_with_kvcache as flash_attn_with_kvcache_interface
)
from typing import Optional, Union
import torch
def flash_attn_with_kvcache(
q,
k_cache,
v_cache,
k=None,
v=None,
qv=None,
rotary_cos=None,
rotary_sin=None,
cache_seqlens: Optional[Union[int, torch.Tensor]] = None,
cache_batch_idx: Optional[torch.Tensor] = None,
cache_leftpad: Optional[torch.Tensor] = None,
page_table: Optional[torch.Tensor] = None,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_k_new: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
rotary_seqlens: Optional[torch.Tensor] = None,
q_descale: Optional[torch.Tensor] = None,
k_descale: Optional[torch.Tensor] = None,
v_descale: Optional[torch.Tensor] = None,
softmax_scale=None,
causal=False,
window_size=(-1, -1), # -1 means infinite context window
attention_chunk: Optional[int] = None,
softcap=0.0, # 0.0 means deactivated
rotary_interleaved=True,
scheduler_metadata=None,
num_splits=0, # Can be tuned for speed
pack_gqa=None, # Can be tuned for speed
sm_margin=0, # Can be tuned if some SMs are used for communication
return_softmax_lse=False,
sinks=None,
ver=3,
):
return flash_attn_with_kvcache_interface(
q=q.contiguous().view(-1, max_seqlen_q, q.shape[-2], q.shape[-1]),
k_cache=k_cache,
v_cache=v_cache,
block_table=page_table,
cache_seqlens=cache_seqlens,
softmax_scale=softmax_scale,
causal=causal,
window_size=window_size,
softcap=softcap,
return_softmax_lse=return_softmax_lse,
num_splits=num_splits,
)
def flash_attn_varlen_func(
q,
k,
v,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q=None,
max_seqlen_k=None,
seqused_q=None,
seqused_k=None,
page_table=None,
softmax_scale=None,
causal=False,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=(-1, -1),
attention_chunk=0,
softcap=0.0,
num_splits=1,
pack_gqa=None,
sm_margin=0,
return_softmax_lse=False,
sinks=None,
ver=3,
):
return flash_attn_varlen_func_interface(
q=q,
k=k,
v=v,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_q,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_q,
softmax_scale=softmax_scale,
causal=causal,
)
\ No newline at end of file
......@@ -45,7 +45,8 @@ if _is_hip:
"aiter is AMD specific kernel library. Please make sure aiter is installed on your AMD device."
)
else:
from sgl_kernel.flash_attn import flash_attn_with_kvcache
# from sgl_kernel.flash_attn import flash_attn_with_kvcache
from sglang.srt.layers.attention.flashattention_interface import flash_attn_with_kvcache
@dataclass(frozen=True)
......
......@@ -20,7 +20,8 @@ if TYPE_CHECKING:
from sglang.srt.model_executor.model_runner import ModelRunner
from sgl_kernel import merge_state_v2
from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
# from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
from sglang.srt.layers.attention.flashattention_interface import flash_attn_varlen_func, flash_attn_with_kvcache
class XPUAttentionBackend(AttentionBackend):
......
......@@ -165,6 +165,7 @@ MLA_ATTENTION_BACKENDS = [
"triton",
"flashmla",
"cutlass_mla",
"dcu_mla",
"trtllm_mla",
"ascend",
"nsa",
......
......@@ -342,6 +342,10 @@ def handle_attention_flashmla(attn, forward_batch):
return _handle_attention_backend(attn, forward_batch, "flashmla")
def handle_attention_dcu_mla(attn, forward_batch):
return _handle_attention_backend(attn, forward_batch, "dcu_mla")
def handle_attention_cutlass_mla(attn, forward_batch):
return _handle_attention_backend(attn, forward_batch, "cutlass_mla")
......@@ -3577,6 +3581,7 @@ AttentionBackendRegistry.register("ascend", handle_attention_ascend)
AttentionBackendRegistry.register("flashinfer", handle_attention_flashinfer)
AttentionBackendRegistry.register("fa3", handle_attention_fa3)
AttentionBackendRegistry.register("flashmla", handle_attention_flashmla)
AttentionBackendRegistry.register("dcu_mla", handle_attention_dcu_mla)
AttentionBackendRegistry.register("cutlass_mla", handle_attention_cutlass_mla)
AttentionBackendRegistry.register("fa4", handle_attention_fa4)
AttentionBackendRegistry.register("trtllm_mla", handle_attention_trtllm_mla)
......
......@@ -102,6 +102,8 @@ ATTENTION_BACKEND_CHOICES = [
"torch_native",
"flex_attention",
"nsa",
# ransplant from vllm
"dcu_mla",
# NVIDIA specific
"cutlass_mla",
"fa3",
......@@ -1077,9 +1079,11 @@ class ServerArgs:
if (
self.attention_backend == "flashmla"
or self.decode_attention_backend == "flashmla"
or self.attention_backend == "dcu_mla"
or self.decode_attention_backend == "dcu_mla"
):
logger.warning(
"FlashMLA only supports a page_size of 64, change page_size to 64."
"FlashMLA/DCU MLA only supports a page_size of 64, change page_size to 64."
)
self.page_size = 64
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment