"vscode:/vscode.git/clone" did not exist on "662667d0c1222d8f24b82eac5d61bcfe49ae97b7"
Unverified Commit 43baba64 authored by Yuan Luo's avatar Yuan Luo Committed by GitHub
Browse files

[EP] Add cuda kernel for moe_ep_post_reorder (#6837)


Co-authored-by: default avatarluoyuan.luo <luoyuan.luo@antgroup.com>
parent 0166403c
import torch
import triton
from sgl_kernel import ep_moe_post_reorder
from sglang.srt.layers.moe.ep_moe.kernels import post_reorder_triton_kernel
batch_sizes = [64, 128, 256, 512, 640, 768, 1024, 2048, 4096]
configs = [(bs,) for bs in batch_sizes]
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["cuda", "triton"],
line_names=["CUDA Kernel", "Triton Kernel"],
styles=[("green", "-"), ("orange", "-")],
ylabel="us",
plot_name="ep-moe-post-reorder-performance",
args={},
)
)
def benchmark(batch_size, provider):
dtype = torch.bfloat16
device = torch.device("cuda")
hidden_size, topk, start_expert_id, end_expert_id, block_size = 4096, 8, 0, 255, 512
def alloc_tensors():
down_output = torch.randn(
batch_size * topk, hidden_size, dtype=dtype, device=device
)
output = torch.zeros(batch_size, hidden_size, dtype=dtype, device=device)
src2dst = torch.randint(
0, batch_size * topk, (batch_size, topk), dtype=torch.int32, device=device
)
topk_ids = torch.randint(
start_expert_id,
end_expert_id + 1,
(batch_size, topk),
dtype=torch.int32,
device=device,
)
topk_weights = torch.rand(batch_size, topk, dtype=dtype, device=device)
return down_output, output, src2dst, topk_ids, topk_weights
quantiles = [0.5, 0.2, 0.8]
if provider == "cuda":
d_out, out, s2d, tk_ids, tk_weights = alloc_tensors()
def run_cuda():
ep_moe_post_reorder(
d_out,
out,
s2d,
tk_ids,
tk_weights,
start_expert_id,
end_expert_id,
topk,
)
ms, min_ms, max_ms = triton.testing.do_bench(run_cuda, quantiles=quantiles)
elif provider == "triton":
d_out, out, s2d, tk_ids, tk_weights = alloc_tensors()
def run_triton():
post_reorder_triton_kernel[(batch_size,)](
d_out.view(-1),
out.view(-1),
s2d.view(-1),
tk_ids.view(-1),
tk_weights.view(-1),
start_expert_id,
end_expert_id,
topk,
hidden_size,
block_size,
)
ms, min_ms, max_ms = triton.testing.do_bench(run_triton, quantiles=quantiles)
else:
raise ValueError(f"Unknown provider: {provider}")
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
if __name__ == "__main__":
benchmark.run(print_data=True)
......@@ -174,9 +174,13 @@ TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
"(Tensor[])");
m.impl("moe_fused_gate", torch::kCUDA, &moe_fused_gate);
m.def(
"ep_moe_pre_reorder(Tensor input_ptr, Tensor gateup_input_ptr, Tensor src2dst_ptr, Tensor topk_ids_ptr, Tensor "
"a1_scales_ptr, int start_expert_id, int end_expert_id, int topk, bool use_per_token_if_dynamic) -> ()");
"ep_moe_pre_reorder(Tensor input, Tensor gateup_input, Tensor src2dst, Tensor topk_ids, Tensor "
"a1_scales, int start_expert_id, int end_expert_id, int topk, bool use_per_token_if_dynamic) -> ()");
m.impl("ep_moe_pre_reorder", torch::kCUDA, &ep_moe_pre_reorder);
m.def(
"ep_moe_post_reorder(Tensor down_output, Tensor output, Tensor src2dst, Tensor topk_ids, Tensor "
"topk_weights, int start_expert_id, int end_expert_id, int topk) -> ()");
m.impl("ep_moe_post_reorder", torch::kCUDA, &ep_moe_post_reorder);
m.def(
"fp8_blockwise_scaled_grouped_mm(Tensor output, Tensor a_ptrs, Tensor b_ptrs, Tensor out_ptrs, Tensor "
"a_scales_ptrs, Tensor b_scales_ptrs, Tensor a, Tensor b, Tensor scales_a, Tensor scales_b, Tensor "
......
......@@ -67,6 +67,57 @@ __global__ void ep_pre_reorder_cuda_kernel(
}
}
template <typename scalar_t>
__global__ void ep_post_reorder_cuda_kernel(
const scalar_t* __restrict__ down_output_ptr,
scalar_t* __restrict__ output_ptr,
const int* __restrict__ src2dst_ptr,
const int* __restrict__ topk_ids_ptr,
const scalar_t* __restrict__ topk_weights_ptr,
int start_expert_id,
int end_expert_id,
int topk,
int hidden_size) {
const int token_idx = blockIdx.x;
const int tid = threadIdx.x;
const int* token_src2dst = src2dst_ptr + token_idx * topk;
const int* token_topk_ids = topk_ids_ptr + token_idx * topk;
const scalar_t* token_topk_weights = topk_weights_ptr + token_idx * topk;
scalar_t* dst_ptr = output_ptr + static_cast<int64_t>(token_idx) * hidden_size;
constexpr uint32_t vec_size = 16 / sizeof(scalar_t);
using vec_t = flashinfer::vec_t<scalar_t, vec_size>;
const int vec_iters = hidden_size / vec_size;
for (int idx = tid; idx < vec_iters; idx += blockDim.x) {
float acc[vec_size] = {0};
for (int k = 0; k < topk; ++k) {
const int expert_id = token_topk_ids[k];
if (expert_id < start_expert_id || expert_id > end_expert_id) continue;
const int src_row = token_src2dst[k];
const scalar_t* src_ptr = down_output_ptr + static_cast<int64_t>(src_row) * hidden_size;
const float weight = static_cast<float>(token_topk_weights[k]);
vec_t src_vec;
src_vec.cast_load(src_ptr + idx * vec_size);
#pragma unroll
for (uint32_t i = 0; i < vec_size; ++i) {
acc[i] += static_cast<float>(src_vec[i]) * weight;
}
}
vec_t out_vec;
#pragma unroll
for (uint32_t i = 0; i < vec_size; ++i)
out_vec[i] = static_cast<scalar_t>(acc[i]);
out_vec.cast_store(dst_ptr + idx * vec_size);
}
}
void ep_moe_pre_reorder(
torch::Tensor input,
torch::Tensor gateup_input,
......@@ -77,8 +128,8 @@ void ep_moe_pre_reorder(
int64_t end_expert_id,
int64_t topk,
bool use_per_token_if_dynamic) {
int total_blocks = input.size(0);
int block_size = 512;
const int total_blocks = input.size(0);
const int block_size = 512;
dim3 grid(total_blocks);
dim3 block(block_size);
int hidden_size = input.size(1);
......@@ -98,3 +149,33 @@ void ep_moe_pre_reorder(
return true;
});
}
void ep_moe_post_reorder(
torch::Tensor down_output,
torch::Tensor output,
torch::Tensor src2dst,
torch::Tensor topk_ids,
torch::Tensor topk_weights,
int64_t start_expert_id,
int64_t end_expert_id,
int64_t topk) {
const int total_tokens = output.size(0);
const int block_size = 512;
dim3 grid(total_tokens);
dim3 block(block_size);
const int hidden_size = output.size(1);
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16(down_output.scalar_type(), scalar_t, [&] {
ep_post_reorder_cuda_kernel<scalar_t><<<grid, block>>>(
static_cast<scalar_t*>(down_output.data_ptr()),
static_cast<scalar_t*>(output.data_ptr()),
src2dst.data_ptr<int>(),
topk_ids.data_ptr<int>(),
static_cast<scalar_t*>(topk_weights.data_ptr()),
static_cast<int>(start_expert_id),
static_cast<int>(end_expert_id),
static_cast<int>(topk),
hidden_size);
return true;
});
}
......@@ -264,6 +264,16 @@ void ep_moe_pre_reorder(
int64_t topk,
bool use_per_token_if_dynamic);
void ep_moe_post_reorder(
torch::Tensor down_output,
torch::Tensor output,
torch::Tensor src2dst,
torch::Tensor topk_ids,
torch::Tensor topk_weights,
int64_t start_expert_id,
int64_t end_expert_id,
int64_t topk);
void shuffle_rows(const torch::Tensor& input_tensor, const torch::Tensor& dst2src_map, torch::Tensor& output_tensor);
void cutlass_fp4_group_mm(
......
......@@ -49,6 +49,7 @@ from sgl_kernel.gemm import (
from sgl_kernel.grammar import apply_token_bitmask_inplace_cuda
from sgl_kernel.moe import (
cutlass_fp4_group_mm,
ep_moe_post_reorder,
ep_moe_pre_reorder,
fp8_blockwise_scaled_grouped_mm,
moe_align_block_size,
......
......@@ -88,6 +88,28 @@ def ep_moe_pre_reorder(
)
def ep_moe_post_reorder(
down_output,
output,
src2dst,
topk_ids,
topk_weights,
start_expert_id,
end_expert_id,
topk,
):
return torch.ops.sgl_kernel.ep_moe_post_reorder.default(
down_output,
output,
src2dst,
topk_ids,
topk_weights,
start_expert_id,
end_expert_id,
topk,
)
def fp8_blockwise_scaled_grouped_mm(
output,
a_ptrs,
......
import itertools
import pytest
import torch
from sgl_kernel import ep_moe_post_reorder
from sglang.srt.layers.moe.ep_moe.kernels import post_reorder_triton_kernel
def create_test_tensors(
batch_size: int,
hidden_size: int,
topk: int,
start_expert_id: int,
end_expert_id: int,
dtype: torch.dtype,
device: torch.device,
):
down_output = torch.randn(
batch_size * topk, hidden_size, dtype=dtype, device=device
)
# Ensure src2dst has no duplicate destinations to avoid race conditions
total_tokens = batch_size * topk
dst_indices = torch.randperm(total_tokens, device=device, dtype=torch.int32)
src2dst = dst_indices.view(batch_size, topk)
topk_ids = torch.randint(
start_expert_id,
end_expert_id + 1,
(batch_size, topk),
dtype=torch.int32,
device=device,
)
topk_weights = torch.rand(batch_size, topk, dtype=dtype, device=device)
return down_output, src2dst, topk_ids, topk_weights
def run_cuda_kernel(
down_output: torch.Tensor,
output: torch.Tensor,
src2dst: torch.Tensor,
topk_ids: torch.Tensor,
topk_weights: torch.Tensor,
start_expert_id: int,
end_expert_id: int,
topk: int,
):
ep_moe_post_reorder(
down_output,
output,
src2dst,
topk_ids,
topk_weights,
start_expert_id,
end_expert_id,
topk,
)
return output
def run_triton_kernel(
down_output: torch.Tensor,
output: torch.Tensor,
src2dst: torch.Tensor,
topk_ids: torch.Tensor,
topk_weights: torch.Tensor,
start_expert_id: int,
end_expert_id: int,
topk: int,
hidden_size: int,
):
batch_size = down_output.size(0)
block_size = 512
post_reorder_triton_kernel[(batch_size,)](
down_output,
output,
src2dst,
topk_ids,
topk_weights,
start_expert_id,
end_expert_id,
topk,
hidden_size,
block_size,
)
return output
def assert_close(a, b):
a32, b32 = a.float(), b.float()
if a.dtype is torch.float16:
torch.testing.assert_close(a32, b32, rtol=1e-5, atol=1e-2)
elif a.dtype is torch.bfloat16:
torch.testing.assert_close(a32, b32, rtol=1e-4, atol=1e-1)
else:
torch.testing.assert_close(a32, b32, rtol=1e-5, atol=1e-5)
@pytest.mark.parametrize(
"batch_size,hidden_size,topk",
list(itertools.product([32, 64], [128, 256, 512], [2, 4, 8])),
)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32])
def test_ep_moe_post_reorder_vs_triton(
batch_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
):
device = torch.device("cuda")
start_expert_id = 0
end_expert_id = 15
(
down_output,
src2dst,
topk_ids,
topk_weights,
) = create_test_tensors(
batch_size,
hidden_size,
topk,
start_expert_id,
end_expert_id,
dtype,
device,
)
output_cuda = torch.empty(batch_size, hidden_size, dtype=dtype, device=device)
output_triton = torch.empty(batch_size, hidden_size, dtype=dtype, device=device)
cuda_output = run_cuda_kernel(
down_output,
output_cuda,
src2dst,
topk_ids,
topk_weights,
start_expert_id,
end_expert_id,
topk,
)
triton_output = run_triton_kernel(
down_output,
output_triton,
src2dst,
topk_ids,
topk_weights,
start_expert_id,
end_expert_id,
topk,
hidden_size,
)
assert_close(cuda_output, triton_output)
if __name__ == "__main__":
pytest.main([__file__])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment