Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
40e53d65
Unverified
Commit
40e53d65
authored
Jun 13, 2024
by
Liangsheng Yin
Committed by
GitHub
Jun 13, 2024
Browse files
Add disk cache for loading ShareGPT dataset. (#542)
parent
fb9296f0
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
55 additions
and
35 deletions
+55
-35
benchmark/latency_throughput/bench_throughput.py
benchmark/latency_throughput/bench_throughput.py
+55
-35
No files found.
benchmark/latency_throughput/bench_throughput.py
View file @
40e53d65
...
...
@@ -19,6 +19,7 @@ On the client side, run:
import
argparse
import
asyncio
import
json
import
os
import
random
import
time
from
typing
import
AsyncGenerator
,
List
,
Tuple
...
...
@@ -37,43 +38,62 @@ def sample_requests(
num_requests
:
int
,
tokenizer
:
AutoTokenizer
,
)
->
List
[
Tuple
[
str
,
int
,
int
]]:
# Load the dataset.
with
open
(
dataset_path
)
as
f
:
dataset
=
json
.
load
(
f
)
# Filter out the conversations with less than 2 turns.
dataset
=
[
data
for
data
in
dataset
if
len
(
data
[
"conversations"
])
>=
2
]
# Only keep the first two turns of each conversation.
dataset
=
[
(
data
[
"conversations"
][
0
][
"value"
],
data
[
"conversations"
][
1
][
"value"
])
for
data
in
dataset
]
# Tokenize the prompts and completions.
prompts
=
[
prompt
for
prompt
,
_
in
dataset
]
prompt_token_ids
=
tokenizer
(
prompts
).
input_ids
completions
=
[
completion
for
_
,
completion
in
dataset
]
completion_token_ids
=
tokenizer
(
completions
).
input_ids
tokenized_dataset
=
[]
for
i
in
range
(
len
(
dataset
)):
output_len
=
len
(
completion_token_ids
[
i
])
tokenized_dataset
.
append
((
prompts
[
i
],
prompt_token_ids
[
i
],
output_len
))
# Filter out too long sequences.
filtered_dataset
:
List
[
Tuple
[
str
,
int
,
int
]]
=
[]
for
prompt
,
prompt_token_ids
,
output_len
in
tokenized_dataset
:
prompt_len
=
len
(
prompt_token_ids
)
if
prompt_len
<
4
or
output_len
<
4
:
# Prune too short sequences.
# This is because TGI causes errors when the input or output length
# is too short.
continue
if
prompt_len
>
1024
or
prompt_len
+
output_len
>
2048
:
# Prune too long sequences.
continue
filtered_dataset
.
append
((
prompt
,
prompt_len
,
output_len
))
def
load_dataset
():
with
open
(
dataset_path
,
encoding
=
"utf-8"
)
as
f
:
dataset
=
json
.
load
(
f
)
# Filter out the conversations with less than 2 turns.
dataset
=
[
data
for
data
in
dataset
if
len
(
data
[
"conversations"
])
>=
2
]
# Only keep the first two turns of each conversation.
dataset
=
[
(
data
[
"conversations"
][
0
][
"value"
],
data
[
"conversations"
][
1
][
"value"
])
for
data
in
dataset
]
# Tokenize the prompts and completions.
prompts
=
[
prompt
for
prompt
,
_
in
dataset
]
prompt_token_ids
=
tokenizer
(
prompts
).
input_ids
completions
=
[
completion
for
_
,
completion
in
dataset
]
completion_token_ids
=
tokenizer
(
completions
).
input_ids
tokenized_dataset
=
[]
for
i
in
range
(
len
(
dataset
)):
output_len
=
len
(
completion_token_ids
[
i
])
tokenized_dataset
.
append
((
prompts
[
i
],
prompt_token_ids
[
i
],
output_len
))
# Filter out too long sequences.
filtered_dataset
:
List
[
Tuple
[
str
,
int
,
int
]]
=
[]
for
prompt
,
prompt_token_ids
,
output_len
in
tokenized_dataset
:
prompt_len
=
len
(
prompt_token_ids
)
if
prompt_len
<
4
or
output_len
<
4
:
# Prune too short sequences.
# This is because TGI causes errors when the input or output length
# is too short.
continue
if
prompt_len
>
1024
or
prompt_len
+
output_len
>
2048
:
# Prune too long sequences.
continue
filtered_dataset
.
append
((
prompt
,
prompt_len
,
output_len
))
return
filtered_dataset
try
:
from
diskcache
import
Cache
home_dir
=
os
.
path
.
expanduser
(
"~"
)
cache
=
Cache
(
f
"
{
home_dir
}
/.cache/sglang"
)
with
Cache
(
cache
.
directory
)
as
reference
:
reference_key
=
f
"
{
dataset_path
}
_
{
tokenizer
.
name_or_path
}
"
if
reference_key
in
reference
:
print
(
"Reading dataset from cache..."
)
dataset
=
reference
[
reference_key
]
else
:
dataset
=
load_dataset
()
reference
[
reference_key
]
=
dataset
except
ImportError
:
dataset
=
load_dataset
()
# Sample the requests.
sampled_requests
=
random
.
sample
(
filtered_
dataset
,
num_requests
)
sampled_requests
=
random
.
sample
(
dataset
,
num_requests
)
return
sampled_requests
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment