Unverified Commit 3fc97f67 authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Move openai api server into a separate file (#429)

parent abc548c7
import asyncio
import concurrent.futures
import dataclasses
import logging
import multiprocessing as mp
import os
from typing import List
......@@ -31,6 +32,8 @@ from sglang.srt.utils import get_exception_traceback, is_multimodal_model, load_
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
logger = logging.getLogger(__name__)
@dataclasses.dataclass
class ReqState:
......@@ -185,10 +188,15 @@ class TokenizerManager:
while True:
await event.wait()
yield self.convert_logprob_style(state.out_list[-1],
out = self.convert_logprob_style(state.out_list[-1],
obj.return_logprob,
obj.top_logprobs_num,
obj.return_text_in_logprobs)
if self.server_args.log_requests and state.finished:
logger.info(f"in={obj.text}, out={out}")
yield out
state.out_list = []
if state.finished:
del self.rid_to_state[rid]
......
"""Conversion between OpenAI APIs and native SRT APIs"""
import json
import os
from fastapi import HTTPException, Request
from fastapi.responses import StreamingResponse
from sglang.srt.conversation import (
Conversation,
SeparatorStyle,
chat_template_exists,
generate_chat_conv,
register_conv_template,
)
from sglang.srt.managers.io_struct import GenerateReqInput
from sglang.srt.openai_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse,
ChatMessage,
CompletionRequest,
CompletionResponse,
CompletionResponseChoice,
CompletionResponseStreamChoice,
CompletionStreamResponse,
DeltaMessage,
LogProbs,
UsageInfo,
)
from sglang.srt.utils import jsonify_pydantic_model
chat_template_name = None
def load_chat_template_for_openai_api(chat_template_arg):
global chat_template_name
print(f"Use chat template: {chat_template_arg}")
if not chat_template_exists(chat_template_arg):
if not os.path.exists(chat_template_arg):
raise RuntimeError(
f"Chat template {chat_template_arg} is not a built-in template name "
"or a valid chat template file path."
)
with open(chat_template_arg, "r") as filep:
template = json.load(filep)
try:
sep_style = SeparatorStyle[template["sep_style"]]
except KeyError:
raise ValueError(
f"Unknown separator style: {template['sep_style']}"
) from None
register_conv_template(
Conversation(
name=template["name"],
system_template=template["system"] + "\n{system_message}",
system_message=template.get("system_message", ""),
roles=(template["user"], template["assistant"]),
sep_style=sep_style,
sep=template.get("sep", "\n"),
stop_str=template["stop_str"],
),
override=True,
)
chat_template_name = template["name"]
else:
chat_template_name = chat_template_arg
async def v1_completions(tokenizer_manager, raw_request: Request):
request_json = await raw_request.json()
request = CompletionRequest(**request_json)
# TODO: Validate the request and return HTTPStatus.BAD_REQUEST if invalid.
assert request.n == 1
adapted_request = GenerateReqInput(
text=request.prompt,
sampling_params={
"temperature": request.temperature,
"max_new_tokens": request.max_tokens,
"stop": request.stop,
"top_p": request.top_p,
"presence_penalty": request.presence_penalty,
"frequency_penalty": request.frequency_penalty,
"regex": request.regex,
},
return_logprob=request.logprobs is not None and request.logprobs > 0,
top_logprobs_num=request.logprobs if request.logprobs is not None else 0,
return_text_in_logprobs=True,
stream=request.stream,
)
adapted_request.post_init()
if adapted_request.stream:
async def generate_stream_resp():
stream_buffer = ""
n_prev_token = 0
async for content in tokenizer_manager.generate_request(adapted_request):
text = content["text"]
prompt_tokens = content["meta_info"]["prompt_tokens"]
completion_tokens = content["meta_info"]["completion_tokens"]
if not stream_buffer: # The first chunk
if request.echo:
# Prepend prompt in response text.
text = request.prompt + text
if request.logprobs:
# The first chunk and echo is enabled.
if not stream_buffer and request.echo:
prefill_token_logprobs = content["meta_info"][
"prefill_token_logprobs"
]
prefill_top_logprobs = content["meta_info"][
"prefill_top_logprobs"
]
else:
prefill_token_logprobs = None
prefill_top_logprobs = None
logprobs = to_openai_style_logprobs(
prefill_token_logprobs=prefill_token_logprobs,
prefill_top_logprobs=prefill_top_logprobs,
decode_token_logprobs=content["meta_info"][
"decode_token_logprobs"
][n_prev_token:],
decode_top_logprobs=content["meta_info"]["decode_top_logprobs"][
n_prev_token:
],
)
n_prev_token = len(content["meta_info"]["decode_token_logprobs"])
else:
logprobs = None
delta = text[len(stream_buffer) :]
stream_buffer = content["text"]
choice_data = CompletionResponseStreamChoice(
index=0,
text=delta,
logprobs=logprobs,
finish_reason=None,
)
chunk = CompletionStreamResponse(
id=content["meta_info"]["id"],
object="text_completion",
choices=[choice_data],
model=request.model,
usage=UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
yield f"data: {jsonify_pydantic_model(chunk)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(generate_stream_resp(), media_type="text/event-stream")
# Non-streaming response.
ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
ret = ret[0] if isinstance(ret, list) else ret
prompt_tokens = ret["meta_info"]["prompt_tokens"]
completion_tokens = ret["meta_info"]["completion_tokens"]
text = ret["text"]
if request.echo:
text = request.prompt + text
if request.logprobs:
if request.echo:
prefill_token_logprobs = ret["meta_info"]["prefill_token_logprobs"]
prefill_top_logprobs = ret["meta_info"]["prefill_top_logprobs"]
else:
prefill_token_logprobs = None
prefill_top_logprobs = None
logprobs = to_openai_style_logprobs(
prefill_token_logprobs=prefill_token_logprobs,
prefill_top_logprobs=prefill_top_logprobs,
decode_token_logprobs=ret["meta_info"]["decode_token_logprobs"],
decode_top_logprobs=ret["meta_info"]["decode_top_logprobs"],
)
else:
logprobs = None
choice_data = CompletionResponseChoice(
index=0,
text=text,
logprobs=logprobs,
finish_reason=None, # TODO(comaniac): Add finish reason.
)
response = CompletionResponse(
id=ret["meta_info"]["id"],
model=request.model,
choices=[choice_data],
usage=UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
return response
async def v1_chat_completions(tokenizer_manager, raw_request: Request):
request_json = await raw_request.json()
request = ChatCompletionRequest(**request_json)
# TODO: Validate the request and return HTTPStatus.BAD_REQUEST if invalid.
assert request.n == 1
# Prep the data needed for the underlying GenerateReqInput:
# - prompt: The full prompt string.
# - stop: Custom stop tokens.
# - image_data: None or a list of image strings (URLs or base64 strings).
# None skips any image processing in GenerateReqInput.
if not isinstance(request.messages, str):
# Apply chat template and its stop strings.
if chat_template_name is None:
prompt = tokenizer_manager.tokenizer.apply_chat_template(
request.messages, tokenize=False, add_generation_prompt=True
)
stop = request.stop
image_data = None
else:
conv = generate_chat_conv(request, chat_template_name)
prompt = conv.get_prompt()
image_data = conv.image_data
stop = conv.stop_str or []
if request.stop:
if isinstance(request.stop, str):
stop.append(request.stop)
else:
stop.extend(request.stop)
else:
# Use the raw prompt and stop strings if the messages is already a string.
prompt = request.messages
stop = request.stop
image_data = None
adapted_request = GenerateReqInput(
text=prompt,
image_data=image_data,
sampling_params={
"temperature": request.temperature,
"max_new_tokens": request.max_tokens,
"stop": stop,
"top_p": request.top_p,
"presence_penalty": request.presence_penalty,
"frequency_penalty": request.frequency_penalty,
"regex": request.regex,
},
stream=request.stream,
)
adapted_request.post_init()
if adapted_request.stream:
async def generate_stream_resp():
is_first = True
stream_buffer = ""
async for content in tokenizer_manager.generate_request(adapted_request):
if is_first:
# First chunk with role
is_first = False
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None,
)
chunk = ChatCompletionStreamResponse(
id=content["meta_info"]["id"],
choices=[choice_data],
model=request.model,
)
yield f"data: {jsonify_pydantic_model(chunk)}\n\n"
text = content["text"]
delta = text[len(stream_buffer) :]
stream_buffer = text
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=DeltaMessage(content=delta), finish_reason=None
)
chunk = ChatCompletionStreamResponse(
id=content["meta_info"]["id"],
choices=[choice_data],
model=request.model,
)
yield f"data: {jsonify_pydantic_model(chunk)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(generate_stream_resp(), media_type="text/event-stream")
# Non-streaming response.
ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
prompt_tokens = ret["meta_info"]["prompt_tokens"]
completion_tokens = ret["meta_info"]["completion_tokens"]
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=ret["text"]),
finish_reason=None, # TODO(comaniac): Add finish reason.
)
response = ChatCompletionResponse(
id=ret["meta_info"]["id"],
model=request.model,
choices=[choice_data],
usage=UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
return response
def to_openai_style_logprobs(
prefill_token_logprobs=None,
decode_token_logprobs=None,
prefill_top_logprobs=None,
decode_top_logprobs=None,
):
ret_logprobs = LogProbs()
def append_token_logprobs(token_logprobs):
for logprob, _, token_text in token_logprobs:
ret_logprobs.tokens.append(token_text)
ret_logprobs.token_logprobs.append(logprob)
# Not Supported yet
ret_logprobs.text_offset.append(-1)
def append_top_logprobs(top_logprobs):
for tokens in top_logprobs:
if tokens is not None:
ret_logprobs.top_logprobs.append(
{token[2]: token[0] for token in tokens}
)
else:
ret_logprobs.top_logprobs.append(None)
if prefill_token_logprobs is not None:
append_token_logprobs(prefill_token_logprobs)
if decode_token_logprobs is not None:
append_token_logprobs(decode_token_logprobs)
if prefill_top_logprobs is not None:
append_top_logprobs(prefill_top_logprobs)
if decode_top_logprobs is not None:
append_top_logprobs(decode_top_logprobs)
return ret_logprobs
\ No newline at end of file
......@@ -20,21 +20,24 @@ class UsageInfo(BaseModel):
class CompletionRequest(BaseModel):
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/completions/create
model: str
prompt: Union[str, List[str]]
suffix: Optional[str] = None
max_tokens: Optional[int] = 16
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
n: Optional[int] = 1
stream: Optional[bool] = False
logprobs: Optional[int] = None
prompt: Union[List[int], List[List[int]], str, List[str]]
best_of: Optional[int] = None
echo: Optional[bool] = False
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0
best_of: Optional[int] = None
logit_bias: Optional[Dict[str, float]] = None
logprobs: Optional[int] = None
max_tokens: Optional[int] = 16
n: int = 1
presence_penalty: Optional[float] = 0.0
seed: Optional[int] = None
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
suffix: Optional[str] = None
temperature: Optional[float] = 1.0
top_p: Optional[float] = 1.0
user: Optional[str] = None
# Extra parameters for SRT backend only and will be ignored by OpenAI models.
......@@ -108,20 +111,30 @@ ChatCompletionMessageParam = Union[
]
class ResponseFormat(BaseModel):
# type must be "json_object" or "text"
type: Literal["text", "json_object"]
class ChatCompletionRequest(BaseModel):
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/chat/create
messages: List[ChatCompletionMessageParam]
model: str
messages: Union[str, List[ChatCompletionMessageParam]]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
logprobs: Optional[bool] = False
top_logprobs: Optional[int] = None
max_tokens: Optional[int] = None
n: Optional[int] = 1
max_tokens: Optional[int] = 16
presence_penalty: Optional[float] = 0.0
response_format: Optional[ResponseFormat] = None
seed: Optional[int] = None
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
user: Optional[str] = None
best_of: Optional[int] = None
# Extra parameters for SRT backend only and will be ignored by OpenAI models.
regex: Optional[str] = None
......@@ -135,6 +148,7 @@ class ChatMessage(BaseModel):
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
logprobs: Optional[LogProbs] = None
finish_reason: Optional[str] = None
......@@ -155,6 +169,7 @@ class DeltaMessage(BaseModel):
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
logprobs: Optional[LogProbs] = None
finish_reason: Optional[str] = None
......@@ -163,4 +178,4 @@ class ChatCompletionStreamResponse(BaseModel):
object: str = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
choices: List[ChatCompletionResponseStreamChoice]
\ No newline at end of file
......@@ -3,6 +3,7 @@
import asyncio
import dataclasses
import json
import logging
import multiprocessing as mp
import os
import sys
......@@ -18,45 +19,23 @@ import psutil
import requests
import uvicorn
import uvloop
from fastapi import FastAPI, HTTPException, Request
from fastapi import FastAPI, Request
from fastapi.responses import Response, StreamingResponse
from sglang.backend.runtime_endpoint import RuntimeEndpoint
from sglang.srt.constrained import disable_cache
from sglang.srt.conversation import (
Conversation,
SeparatorStyle,
chat_template_exists,
generate_chat_conv,
register_conv_template,
)
from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.managers.detokenizer_manager import start_detokenizer_process
from sglang.srt.managers.io_struct import DetokenizeReqInput, GenerateReqInput
from sglang.srt.openai_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse,
ChatMessage,
CompletionRequest,
CompletionResponse,
CompletionResponseChoice,
CompletionResponseStreamChoice,
CompletionStreamResponse,
DeltaMessage,
LogProbs,
UsageInfo,
)
from sglang.srt.managers.io_struct import GenerateReqInput
from sglang.srt.managers.router.manager import start_router_process
from sglang.srt.managers.tokenizer_manager import TokenizerManager
from sglang.srt.openai_api_adapter import (
v1_completions, v1_chat_completions, load_chat_template_for_openai_api)
from sglang.srt.server_args import PortArgs, ServerArgs
from sglang.srt.utils import (
allocate_init_ports,
assert_pkg_version,
enable_show_time_cost,
jsonify_pydantic_model,
get_exception_traceback,
API_KEY_HEADER_NAME,
APIKeyValidatorMiddleware
......@@ -67,7 +46,6 @@ asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
app = FastAPI()
tokenizer_manager = None
chat_template_name = None
@app.get("/health")
......@@ -117,343 +95,23 @@ async def generate_request(obj: GenerateReqInput):
@app.post("/v1/completions")
async def v1_completions(raw_request: Request):
request_json = await raw_request.json()
request = CompletionRequest(**request_json)
# TODO: Validate the request and return HTTPStatus.BAD_REQUEST if invalid.
assert request.n == 1
adapted_request = GenerateReqInput(
text=request.prompt,
sampling_params={
"temperature": request.temperature,
"max_new_tokens": request.max_tokens,
"stop": request.stop,
"top_p": request.top_p,
"presence_penalty": request.presence_penalty,
"frequency_penalty": request.frequency_penalty,
"regex": request.regex,
},
return_logprob=request.logprobs is not None and request.logprobs > 0,
top_logprobs_num=request.logprobs if request.logprobs is not None else 0,
return_text_in_logprobs=True,
stream=request.stream,
)
adapted_request.post_init()
if adapted_request.stream:
async def generate_stream_resp():
stream_buffer = ""
n_prev_token = 0
async for content in tokenizer_manager.generate_request(adapted_request):
text = content["text"]
prompt_tokens = content["meta_info"]["prompt_tokens"]
completion_tokens = content["meta_info"]["completion_tokens"]
if not stream_buffer: # The first chunk
if request.echo:
# Prepend prompt in response text.
text = request.prompt + text
if request.logprobs:
# The first chunk and echo is enabled.
if not stream_buffer and request.echo:
prefill_token_logprobs = content["meta_info"][
"prefill_token_logprobs"
]
prefill_top_logprobs = content["meta_info"][
"prefill_top_logprobs"
]
else:
prefill_token_logprobs = None
prefill_top_logprobs = None
logprobs = await make_openai_style_logprobs(
prefill_token_logprobs=prefill_token_logprobs,
prefill_top_logprobs=prefill_top_logprobs,
decode_token_logprobs=content["meta_info"][
"decode_token_logprobs"
][n_prev_token:],
decode_top_logprobs=content["meta_info"]["decode_top_logprobs"][
n_prev_token:
],
)
n_prev_token = len(content["meta_info"]["decode_token_logprobs"])
else:
logprobs = None
delta = text[len(stream_buffer) :]
stream_buffer = content["text"]
choice_data = CompletionResponseStreamChoice(
index=0,
text=delta,
logprobs=logprobs,
finish_reason=None,
)
chunk = CompletionStreamResponse(
id=content["meta_info"]["id"],
object="text_completion",
choices=[choice_data],
model=request.model,
usage=UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
yield f"data: {jsonify_pydantic_model(chunk)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(generate_stream_resp(), media_type="text/event-stream")
# Non-streaming response.
ret = await generate_request(adapted_request)
ret = ret[0] if isinstance(ret, list) else ret
prompt_tokens = ret["meta_info"]["prompt_tokens"]
completion_tokens = ret["meta_info"]["completion_tokens"]
text = ret["text"]
if request.echo:
text = request.prompt + text
if request.logprobs:
if request.echo:
prefill_token_logprobs = ret["meta_info"]["prefill_token_logprobs"]
prefill_top_logprobs = ret["meta_info"]["prefill_top_logprobs"]
else:
prefill_token_logprobs = None
prefill_top_logprobs = None
logprobs = await make_openai_style_logprobs(
prefill_token_logprobs=prefill_token_logprobs,
prefill_top_logprobs=prefill_top_logprobs,
decode_token_logprobs=ret["meta_info"]["decode_token_logprobs"],
decode_top_logprobs=ret["meta_info"]["decode_top_logprobs"],
)
else:
logprobs = None
choice_data = CompletionResponseChoice(
index=0,
text=text,
logprobs=logprobs,
finish_reason=None, # TODO(comaniac): Add finish reason.
)
response = CompletionResponse(
id=ret["meta_info"]["id"],
model=request.model,
choices=[choice_data],
usage=UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
return response
async def openai_v1_completions(raw_request: Request):
return await v1_completions(tokenizer_manager, raw_request)
@app.post("/v1/chat/completions")
async def v1_chat_completions(raw_request: Request):
request_json = await raw_request.json()
request = ChatCompletionRequest(**request_json)
# TODO: Validate the request and return HTTPStatus.BAD_REQUEST if invalid.
assert request.n == 1
# Prep the data needed for the underlying GenerateReqInput:
# - prompt: The full prompt string.
# - stop: Custom stop tokens.
# - image_data: None or a list of image strings (URLs or base64 strings).
# None skips any image processing in GenerateReqInput.
if not isinstance(request.messages, str):
# Apply chat template and its stop strings.
if chat_template_name is None:
# This flow doesn't support the full OpenAI spec. Verify messages
# has the right type before proceeding:
for m in request.messages:
if not isinstance(m.content, str):
raise HTTPException(
status_code=503,
detail="Structured content requests not supported with "
"HuggingFace Chat Templates. "
"Make sure the server specifies a sglang chat template.",
)
prompt = tokenizer_manager.tokenizer.apply_chat_template(
request.messages, tokenize=False, add_generation_prompt=True
)
stop = request.stop
image_data = None
else:
conv = generate_chat_conv(request, chat_template_name)
prompt = conv.get_prompt()
image_data = conv.image_data
stop = conv.stop_str or []
if request.stop:
if isinstance(request.stop, str):
stop.append(request.stop)
else:
stop.extend(request.stop)
else:
# Use the raw prompt and stop strings if the messages is already a string.
prompt = request.messages
stop = request.stop
image_data = None
adapted_request = GenerateReqInput(
text=prompt,
image_data=image_data,
sampling_params={
"temperature": request.temperature,
"max_new_tokens": request.max_tokens,
"stop": stop,
"top_p": request.top_p,
"presence_penalty": request.presence_penalty,
"frequency_penalty": request.frequency_penalty,
"regex": request.regex,
},
stream=request.stream,
)
adapted_request.post_init()
if adapted_request.stream:
async def gnerate_stream_resp():
is_first = True
stream_buffer = ""
async for content in tokenizer_manager.generate_request(adapted_request):
if is_first:
# First chunk with role
is_first = False
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None,
)
chunk = ChatCompletionStreamResponse(
id=content["meta_info"]["id"],
choices=[choice_data],
model=request.model,
)
yield f"data: {jsonify_pydantic_model(chunk)}\n\n"
text = content["text"]
delta = text[len(stream_buffer) :]
stream_buffer = text
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=DeltaMessage(content=delta), finish_reason=None
)
chunk = ChatCompletionStreamResponse(
id=content["meta_info"]["id"],
choices=[choice_data],
model=request.model,
)
yield f"data: {jsonify_pydantic_model(chunk)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(gnerate_stream_resp(), media_type="text/event-stream")
# Non-streaming response.
ret = await generate_request(adapted_request)
prompt_tokens = ret["meta_info"]["prompt_tokens"]
completion_tokens = ret["meta_info"]["completion_tokens"]
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=ret["text"]),
finish_reason=None, # TODO(comaniac): Add finish reason.
)
response = ChatCompletionResponse(
id=ret["meta_info"]["id"],
model=request.model,
choices=[choice_data],
usage=UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
return response
async def make_openai_style_logprobs(
prefill_token_logprobs=None,
decode_token_logprobs=None,
prefill_top_logprobs=None,
decode_top_logprobs=None,
):
ret_logprobs = LogProbs()
def append_token_logprobs(token_logprobs):
for logprob, _, token_text in token_logprobs:
ret_logprobs.tokens.append(token_text)
ret_logprobs.token_logprobs.append(logprob)
# Not Supported yet
ret_logprobs.text_offset.append(-1)
def append_top_logprobs(top_logprobs):
for tokens in top_logprobs:
if tokens is not None:
ret_logprobs.top_logprobs.append(
{token[2]: token[0] for token in tokens}
)
else:
ret_logprobs.top_logprobs.append(None)
if prefill_token_logprobs is not None:
append_token_logprobs(prefill_token_logprobs)
if decode_token_logprobs is not None:
append_token_logprobs(decode_token_logprobs)
if prefill_top_logprobs is not None:
append_top_logprobs(prefill_top_logprobs)
if decode_top_logprobs is not None:
append_top_logprobs(decode_top_logprobs)
return ret_logprobs
def load_chat_template_for_openai_api(chat_template_arg):
global chat_template_name
print(f"Use chat template: {chat_template_arg}")
if not chat_template_exists(chat_template_arg):
if not os.path.exists(chat_template_arg):
raise RuntimeError(
f"Chat template {chat_template_arg} is not a built-in template name "
"or a valid chat template file path."
)
with open(chat_template_arg, "r") as filep:
template = json.load(filep)
try:
sep_style = SeparatorStyle[template["sep_style"]]
except KeyError:
raise ValueError(
f"Unknown separator style: {template['sep_style']}"
) from None
register_conv_template(
Conversation(
name=template["name"],
system_template=template["system"] + "\n{system_message}",
system_message=template.get("system_message", ""),
roles=(template["user"], template["assistant"]),
sep_style=sep_style,
sep=template.get("sep", "\n"),
stop_str=template["stop_str"],
),
override=True,
)
chat_template_name = template["name"]
else:
chat_template_name = chat_template_arg
async def openai_v1_chat_completions(raw_request: Request):
return await v1_chat_completions(tokenizer_manager, raw_request)
def launch_server(server_args: ServerArgs, pipe_finish_writer):
global tokenizer_manager
logging.basicConfig(
level=getattr(logging, server_args.log_level.upper()),
format="%(message)s",
)
# Set global environments
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
if server_args.show_time_cost:
......@@ -656,4 +314,4 @@ class Runtime:
pos += len(cur)
def __del__(self):
self.shutdown()
self.shutdown()
\ No newline at end of file
......@@ -34,6 +34,7 @@ class ServerArgs:
# Logging
log_level: str = "info"
log_requests: bool = False
disable_log_stats: bool = False
log_stats_interval: int = 10
show_time_cost: bool = False
......@@ -180,6 +181,11 @@ class ServerArgs:
default=ServerArgs.log_level,
help="Logging level",
)
parser.add_argument(
"--log-requests",
action="store_true",
help="Log all requests",
)
parser.add_argument(
"--disable-log-stats",
action="store_true",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment