Unverified Commit 3f0fe08d authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Let ModelRunner take InputMetadata as input, instead of ScheduleBatch (#1541)

parent 55b974f9
......@@ -225,14 +225,16 @@ def extend(reqs, model_runner):
tree_cache=None,
)
batch.prepare_for_extend(model_runner.model_config.vocab_size)
logits_output = model_runner.forward(batch)
input_metadata = batch.get_input_metadata()
logits_output = model_runner.forward(input_metadata)
next_token_ids = model_runner.sample(logits_output, batch).tolist()
return next_token_ids, logits_output.next_token_logits, batch
def decode(input_token_ids, batch, model_runner):
batch.prepare_for_decode(input_token_ids)
logits_output = model_runner.forward(batch)
input_metadata = batch.get_input_metadata()
logits_output = model_runner.forward(input_metadata)
next_token_ids = model_runner.sample(logits_output, batch).tolist()
return next_token_ids, logits_output.next_token_logits
......
......@@ -15,7 +15,7 @@ import torch.nn as nn
from sglang.global_config import global_config
from sglang.srt.layers.flashinfer_utils import update_flashinfer_indices
from sglang.srt.managers.schedule_batch import ScheduleBatch, global_server_args_dict
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardMode, InputMetadata
from sglang.srt.utils import is_hip
......@@ -37,9 +37,7 @@ class AttentionBackend(ABC):
"""The base class of attention backends"""
@abstractmethod
def init_forward_metadata(
self, batch: ScheduleBatch, input_metadata: InputMetadata
):
def init_forward_metadata(self, input_metadata: InputMetadata):
"""Init the metadata for a forward pass."""
raise NotImplementedError()
......@@ -133,12 +131,11 @@ class FlashInferAttnBackend(AttentionBackend):
self.forward_metadata = None
self.cuda_graph_metadata = {}
def init_forward_metadata(
self, batch: ScheduleBatch, input_metadata: InputMetadata
):
def init_forward_metadata(self, input_metadata: InputMetadata):
if input_metadata.forward_mode.is_decode():
prefix_lens = None
use_ragged = False
extend_no_prefix = False
total_num_tokens = None
else:
prefix_lens = input_metadata.extend_prefix_lens
......@@ -152,6 +149,7 @@ class FlashInferAttnBackend(AttentionBackend):
use_ragged = True
total_num_tokens = torch.sum(input_metadata.seq_lens).item()
extend_no_prefix = not torch.any(input_metadata.extend_prefix_lens).item()
update_flashinfer_indices(
input_metadata.forward_mode,
......@@ -162,7 +160,12 @@ class FlashInferAttnBackend(AttentionBackend):
use_ragged=use_ragged,
)
self.forward_metadata = (use_ragged, total_num_tokens, self.decode_wrapper)
self.forward_metadata = (
use_ragged,
extend_no_prefix,
total_num_tokens,
self.decode_wrapper,
)
def init_cuda_graph_state(self, max_bs: int):
self.cuda_graph_kv_indptr = torch.zeros(
......@@ -228,7 +231,7 @@ class FlashInferAttnBackend(AttentionBackend):
self.cuda_graph_metadata[bs] = decode_wrapper
self.forward_metadata = (False, None, decode_wrapper)
self.forward_metadata = (False, False, None, decode_wrapper)
def init_forward_metadata_replay_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
......@@ -254,7 +257,9 @@ class FlashInferAttnBackend(AttentionBackend):
else:
prefill_wrapper_paged = self.prefill_wrapper_paged[1]
use_ragged, total_num_tokens, decode_wrapper = self.forward_metadata
use_ragged, extend_no_prefix, total_num_tokens, decode_wrapper = (
self.forward_metadata
)
if not use_ragged:
if k is not None:
......@@ -280,7 +285,7 @@ class FlashInferAttnBackend(AttentionBackend):
logits_soft_cap=layer.logit_cap,
)
if input_metadata.extend_no_prefix:
if extend_no_prefix:
o = o1
else:
o2, s2 = prefill_wrapper_paged.forward_return_lse(
......@@ -300,7 +305,9 @@ class FlashInferAttnBackend(AttentionBackend):
return o.view(-1, layer.tp_q_head_num * layer.head_dim)
def forward_decode(self, q, k, v, layer: nn.Module, input_metadata: InputMetadata):
use_ragged, total_num_tokens, decode_wrapper = self.forward_metadata
use_ragged, extend_no_prefix, total_num_tokens, decode_wrapper = (
self.forward_metadata
)
if isinstance(decode_wrapper, list):
if layer.sliding_window_size != -1:
......@@ -351,9 +358,7 @@ class TritonAttnBackend(AttentionBackend):
self.cuda_graph_max_seq_len = model_runner.model_config.context_len
def init_forward_metadata(
self, batch: ScheduleBatch, input_metadata: InputMetadata
):
def init_forward_metadata(self, input_metadata: InputMetadata):
"""Init auxiliary variables for triton attention backend."""
if input_metadata.forward_mode.is_decode():
......@@ -371,7 +376,7 @@ class TritonAttnBackend(AttentionBackend):
max_extend_len = None
else:
start_loc = attn_logits = max_seq_len = None
prefix_lens = torch.tensor(batch.prefix_lens_cpu, device="cuda")
prefix_lens = input_metadata.extend_prefix_lens
max_extend_len = torch.max(input_metadata.seq_lens - prefix_lens).item()
self.forward_metadata = start_loc, attn_logits, max_seq_len, max_extend_len
......
......@@ -18,13 +18,12 @@ limitations under the License.
import re
from dataclasses import dataclass
import torch
from sglang.srt.lora.lora import LoRAAdapter, get_lora_layer
from sglang.srt.lora.lora_config import LoRAConfig
from sglang.srt.model_executor.forward_batch_info import ForwardMode
from sglang.srt.model_executor.forward_batch_info import InputMetadata
from sglang.srt.utils import is_hip, replace_submodule
# ROCm: flashinfer available later
......@@ -208,9 +207,9 @@ class LoRAManager:
if lora_weight_name:
self.B_buffer[lora_weight_name][i][buffer_id].copy_(weights)
def prepare_lora_batch(self, batch, extend_seq_lens=None):
def prepare_lora_batch(self, input_metadata: InputMetadata):
# load active loras into lora memory pool
cur_uids = set([req.lora_path for req in batch.reqs])
cur_uids = set(input_metadata.lora_paths)
assert len(cur_uids) <= self.max_loras_per_batch
i = 0
evictable_uids = list(self.active_uids)
......@@ -230,11 +229,15 @@ class LoRAManager:
return
# setup lora in forward modules
bs = len(batch.reqs)
seg_lens = extend_seq_lens if batch.forward_mode.is_extend() else torch.ones(bs)
bs = input_metadata.batch_size
seg_lens = (
input_metadata.extend_seq_lens
if input_metadata.forward_mode.is_extend()
else torch.ones(bs)
)
weight_indices = torch.empty((bs,), dtype=torch.int64, device="cuda")
for i, req in enumerate(batch.reqs):
weight_indices[i] = self.buffer_id[req.lora_path]
for i, lora_path in enumerate(input_metadata.lora_paths):
weight_indices[i] = self.buffer_id[lora_path]
for module_name, module in self.lora_modules:
layer_id = get_layer_id(module_name)
......
......@@ -29,7 +29,7 @@ from sglang.srt.constrained.jump_forward import JumpForwardMap
from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
from sglang.srt.mem_cache.chunk_cache import ChunkCache
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
from sglang.srt.model_executor.forward_batch_info import ForwardMode
from sglang.srt.model_executor.forward_batch_info import ForwardMode, InputMetadata
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
from sglang.srt.sampling.sampling_params import SamplingParams
from sglang.srt.server_args import ServerArgs
......@@ -511,6 +511,9 @@ class ScheduleBatch:
self.extend_logprob_start_lens_cpu = [r.extend_logprob_start_len for r in reqs]
self.sampling_info = SamplingBatchInfo.from_schedule_batch(self, vocab_size)
def get_input_metadata(self):
return InputMetadata.from_schedule_batch(self)
def mix_with_running(self, running_batch: "ScheduleBatch"):
self.forward_mode = ForwardMode.MIXED
running_bs = running_batch.batch_size()
......
......@@ -575,8 +575,9 @@ class Scheduler:
if self.is_generation:
# Forward and sample the next tokens
if batch.extend_num_tokens != 0:
input_metadata = batch.get_input_metadata()
logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
batch
input_metadata, batch
)
batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
next_token_ids
......@@ -640,7 +641,8 @@ class Scheduler:
)
else:
assert batch.extend_num_tokens != 0
embeddings = self.tp_worker.forward_batch_embedding(batch)
input_metadata = batch.get_input_metadata()
embeddings = self.tp_worker.forward_batch_embedding(input_metadata)
# Check finish conditions
for i, req in enumerate(batch.reqs):
......@@ -769,7 +771,10 @@ class Scheduler:
batch.prepare_for_decode()
# Forward and sample the next tokens
logits_output, next_token_ids = self.tp_worker.forward_batch_generation(batch)
input_metadata = batch.get_input_metadata()
logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
input_metadata, batch
)
batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
next_token_ids
)
......
......@@ -21,6 +21,7 @@ import logging
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
from sglang.srt.managers.io_struct import UpdateWeightReqInput
from sglang.srt.model_executor.forward_batch_info import InputMetadata
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.server_args import ServerArgs
from sglang.srt.utils import broadcast_pyobj, is_multimodal_model, set_random_seed
......@@ -105,13 +106,13 @@ class ModelTpWorker:
self.random_seed,
)
def forward_batch_generation(self, batch):
logits_output = self.model_runner.forward(batch)
def forward_batch_generation(self, input_metadata: InputMetadata, batch):
logits_output = self.model_runner.forward(input_metadata)
next_token_ids = self.model_runner.sample(logits_output, batch)
return logits_output, next_token_ids
def forward_batch_embedding(self, batch):
logits_output = self.model_runner.forward(batch)
def forward_batch_embedding(self, input_metadata: InputMetadata):
logits_output = self.model_runner.forward(input_metadata)
embeddings = logits_output.embeddings.tolist()
return embeddings
......
......@@ -31,7 +31,6 @@ from sglang.srt.layers.logits_processor import (
LogitsProcessor,
LogitsProcessorOutput,
)
from sglang.srt.managers.schedule_batch import ScheduleBatch
from sglang.srt.model_executor.forward_batch_info import ForwardMode, InputMetadata
from sglang.srt.utils import monkey_patch_vllm_all_gather
......@@ -143,7 +142,6 @@ class CudaGraphRunner:
self.seq_lens = torch.full(
(self.max_bs,), self.seq_len_fill_value, dtype=torch.int32
)
self.position_ids_offsets = torch.ones((self.max_bs,), dtype=torch.int32)
self.out_cache_loc = torch.zeros((self.max_bs,), dtype=torch.int32)
# Capture
......@@ -189,7 +187,6 @@ class CudaGraphRunner:
input_ids = self.input_ids[:bs]
req_pool_indices = self.req_pool_indices[:bs]
seq_lens = self.seq_lens[:bs]
position_ids_offsets = self.position_ids_offsets[:bs]
out_cache_loc = self.out_cache_loc[:bs]
# Attention backend
......@@ -202,6 +199,7 @@ class CudaGraphRunner:
input_metadata = InputMetadata(
forward_mode=ForwardMode.DECODE,
batch_size=bs,
input_ids=input_ids,
req_pool_indices=req_pool_indices,
seq_lens=seq_lens,
req_to_token_pool=self.model_runner.req_to_token_pool,
......@@ -210,7 +208,7 @@ class CudaGraphRunner:
out_cache_loc=out_cache_loc,
return_logprob=False,
top_logprobs_nums=[0] * bs,
positions=(seq_lens - 1 + position_ids_offsets).to(torch.int64),
positions=torch.clamp((seq_lens - 1), min=0).to(torch.int64),
)
return forward(input_ids, input_metadata.positions, input_metadata)
......@@ -235,24 +233,22 @@ class CudaGraphRunner:
self.graph_memory_pool = graph.pool()
return graph, out
def replay(self, batch: ScheduleBatch):
assert batch.out_cache_loc is not None
raw_bs = len(batch.reqs)
def replay(self, input_metadata: InputMetadata):
assert input_metadata.out_cache_loc is not None
raw_bs = input_metadata.batch_size
# Pad
index = bisect.bisect_left(self.capture_bs, raw_bs)
bs = self.capture_bs[index]
if bs != raw_bs:
self.seq_lens.fill_(self.seq_len_fill_value)
self.position_ids_offsets.fill_(1)
self.out_cache_loc.zero_()
# Common inputs
self.input_ids[:raw_bs] = batch.input_ids
self.req_pool_indices[:raw_bs] = batch.req_pool_indices
self.seq_lens[:raw_bs] = batch.seq_lens
self.position_ids_offsets[:raw_bs] = batch.position_ids_offsets
self.out_cache_loc[:raw_bs] = batch.out_cache_loc
self.input_ids[:raw_bs] = input_metadata.input_ids
self.req_pool_indices[:raw_bs] = input_metadata.req_pool_indices
self.seq_lens[:raw_bs] = input_metadata.seq_lens
self.out_cache_loc[:raw_bs] = input_metadata.out_cache_loc
# Attention backend
self.model_runner.attn_backend.init_forward_metadata_replay_cuda_graph(
......@@ -275,15 +271,15 @@ class CudaGraphRunner:
)
# Extract logprobs
if batch.return_logprob:
if input_metadata.return_logprob:
logits_output.next_token_logprobs = torch.nn.functional.log_softmax(
logits_output.next_token_logits, dim=-1
)
return_top_logprob = any(x > 0 for x in batch.top_logprobs_nums)
return_top_logprob = any(x > 0 for x in input_metadata.top_logprobs_nums)
if return_top_logprob:
logits_metadata = LogitsMetadata(
forward_mode=ForwardMode.DECODE,
top_logprobs_nums=batch.top_logprobs_nums,
top_logprobs_nums=input_metadata.top_logprobs_nums,
)
logits_output.output_top_logprobs = LogitsProcessor.get_top_logprobs(
logits_output.next_token_logprobs, logits_metadata
......
......@@ -18,7 +18,7 @@ limitations under the License.
"""Meta data for a forward pass."""
from dataclasses import dataclass
from enum import IntEnum, auto
from typing import TYPE_CHECKING, List
from typing import TYPE_CHECKING, List, Set
import numpy as np
import torch
......@@ -27,7 +27,6 @@ if TYPE_CHECKING:
from sglang.srt.layers.attention_backend import AttentionBackend
from sglang.srt.managers.schedule_batch import ImageInputs, ScheduleBatch
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
from sglang.srt.model_executor.model_runner import ModelRunner
class ForwardMode(IntEnum):
......@@ -37,7 +36,7 @@ class ForwardMode(IntEnum):
EXTEND = auto()
# Decode one token.
DECODE = auto()
# Contains both PREFILL and EXTEND.
# Contains both EXTEND and DECODE.
MIXED = auto()
def is_prefill(self):
......@@ -57,15 +56,17 @@ class ForwardMode(IntEnum):
class InputMetadata:
"""Store all inforamtion of a forward pass."""
# The forward mode
forward_mode: ForwardMode
# The batch size
batch_size: int
# The input ids
input_ids: torch.Tensor
# The indices of requests in the req_to_token_pool
req_pool_indices: torch.Tensor
# The sequence length
seq_lens: torch.Tensor
req_to_token_pool: ReqToTokenPool
token_to_kv_pool: BaseTokenToKVPool
attn_backend: AttentionBackend
# Output location of the KV cache
# The indices of output tokens in the token_to_kv_pool
out_cache_loc: torch.Tensor
# Position information
......@@ -75,7 +76,6 @@ class InputMetadata:
extend_seq_lens: torch.Tensor = None
extend_prefix_lens: torch.Tensor = None
extend_start_loc: torch.Tensor = None
extend_no_prefix: bool = None
# For logprob
return_logprob: bool = False
......@@ -86,82 +86,51 @@ class InputMetadata:
# For multimodal
image_inputs: List[ImageInputs] = None
def init_multimuldal_info(self, batch: ScheduleBatch):
self.image_inputs = [r.image_inputs for r in batch.reqs]
# For LoRA
lora_paths: List[str] = None
def compute_positions(self, batch: ScheduleBatch):
if self.forward_mode.is_decode():
if True:
self.positions = self.seq_lens - 1
else:
# Deprecated
self.positions = (self.seq_lens - 1) + batch.position_ids_offsets
else:
if True:
self.positions = torch.tensor(
np.concatenate(
[
np.arange(batch.prefix_lens_cpu[i], len(req.fill_ids))
for i, req in enumerate(batch.reqs)
],
axis=0,
),
device="cuda",
)
else:
# Deprecated
position_ids_offsets_cpu = batch.position_ids_offsets.cpu().numpy()
self.positions = torch.tensor(
np.concatenate(
[
np.arange(
batch.prefix_lens_cpu[i] + position_ids_offsets_cpu[i],
len(req.fill_ids) + position_ids_offsets_cpu[i],
)
for i, req in enumerate(batch.reqs)
],
axis=0,
),
device="cuda",
)
# Positions should be in long type
self.positions = self.positions.to(torch.int64)
def compute_extend_infos(self, batch: ScheduleBatch):
self.extend_seq_lens = torch.tensor(batch.extend_lens_cpu, device="cuda")
self.extend_prefix_lens = torch.tensor(batch.prefix_lens_cpu, device="cuda")
self.extend_start_loc = torch.zeros_like(self.extend_seq_lens)
self.extend_start_loc[1:] = torch.cumsum(self.extend_seq_lens[:-1], dim=0)
self.extend_no_prefix = all(x == 0 for x in batch.prefix_lens_cpu)
self.extend_seq_lens_cpu = batch.extend_lens_cpu
self.extend_logprob_start_lens_cpu = batch.extend_logprob_start_lens_cpu
# Attention backend
req_to_token_pool: ReqToTokenPool = None
token_to_kv_pool: BaseTokenToKVPool = None
attn_backend: AttentionBackend = None
@classmethod
def from_schedule_batch(
cls,
model_runner: "ModelRunner",
batch: ScheduleBatch,
):
ret = cls(
forward_mode=batch.forward_mode,
batch_size=batch.batch_size(),
input_ids=batch.input_ids,
req_pool_indices=batch.req_pool_indices,
seq_lens=batch.seq_lens,
req_to_token_pool=model_runner.req_to_token_pool,
token_to_kv_pool=model_runner.token_to_kv_pool,
attn_backend=model_runner.attn_backend,
out_cache_loc=batch.out_cache_loc,
return_logprob=batch.return_logprob,
top_logprobs_nums=batch.top_logprobs_nums,
lora_paths=[req.lora_path for req in batch.reqs],
)
ret.compute_positions(batch)
if not batch.forward_mode.is_decode():
ret.init_multimuldal_info(batch)
ret.compute_extend_infos(batch)
model_runner.attn_backend.init_forward_metadata(batch, ret)
if ret.forward_mode.is_decode():
ret.positions = (ret.seq_lens - 1).to(torch.int64)
else:
ret.positions = torch.tensor(
np.concatenate(
[
np.arange(batch.prefix_lens_cpu[i], len(req.fill_ids))
for i, req in enumerate(batch.reqs)
],
axis=0,
),
device="cuda",
).to(torch.int64)
ret.image_inputs = [r.image_inputs for r in batch.reqs]
ret.extend_seq_lens = torch.tensor(batch.extend_lens_cpu, device="cuda")
ret.extend_prefix_lens = torch.tensor(batch.prefix_lens_cpu, device="cuda")
ret.extend_start_loc = torch.zeros_like(ret.extend_seq_lens)
ret.extend_start_loc[1:] = torch.cumsum(ret.extend_seq_lens[:-1], dim=0)
ret.extend_seq_lens_cpu = batch.extend_lens_cpu
ret.extend_logprob_start_lens_cpu = batch.extend_logprob_start_lens_cpu
return ret
......@@ -466,46 +466,47 @@ class ModelRunner:
logger.info("Capture cuda graph begin. This can take up to several minutes.")
self.cuda_graph_runner = CudaGraphRunner(self)
def forward_decode(self, batch: ScheduleBatch):
if self.server_args.lora_paths is not None:
self.lora_manager.prepare_lora_batch(batch)
if self.cuda_graph_runner and self.cuda_graph_runner.can_run(len(batch.reqs)):
return self.cuda_graph_runner.replay(batch)
input_metadata = InputMetadata.from_schedule_batch(self, batch)
def forward_decode(self, input_metadata: InputMetadata):
if self.cuda_graph_runner and self.cuda_graph_runner.can_run(
input_metadata.batch_size
):
return self.cuda_graph_runner.replay(input_metadata)
return self.model.forward(
batch.input_ids, input_metadata.positions, input_metadata
input_metadata.input_ids, input_metadata.positions, input_metadata
)
def forward_extend(self, batch: ScheduleBatch):
input_metadata = InputMetadata.from_schedule_batch(self, batch)
if self.server_args.lora_paths is not None:
self.lora_manager.prepare_lora_batch(batch, input_metadata.extend_seq_lens)
def forward_extend(self, input_metadata: InputMetadata):
if self.is_generation:
return self.model.forward(
batch.input_ids, input_metadata.positions, input_metadata
input_metadata.input_ids, input_metadata.positions, input_metadata
)
else:
# Only embedding models have get_embedding parameter
return self.model.forward(
batch.input_ids,
input_metadata.input_ids,
input_metadata.positions,
input_metadata,
get_embedding=True,
)
def forward(self, batch: ScheduleBatch) -> Tuple[LogitsProcessorOutput]:
assert batch.forward_mode is not None
def forward(self, input_metadata: InputMetadata) -> LogitsProcessorOutput:
# Attach attention information
input_metadata.req_to_token_pool = self.req_to_token_pool
input_metadata.token_to_kv_pool = self.token_to_kv_pool
input_metadata.attn_backend = self.attn_backend
input_metadata.attn_backend.init_forward_metadata(input_metadata)
# Attach lora information
if self.server_args.lora_paths is not None:
self.lora_manager.prepare_lora_batch(input_metadata)
if batch.forward_mode.is_decode():
return self.forward_decode(batch)
elif batch.forward_mode.is_extend():
return self.forward_extend(batch)
if input_metadata.forward_mode.is_decode():
return self.forward_decode(input_metadata)
elif input_metadata.forward_mode.is_extend():
return self.forward_extend(input_metadata)
else:
raise ValueError(f"Invaid forward mode: {batch.forward_mode}")
raise ValueError(f"Invaid forward mode: {input_metadata.forward_mode}")
def _apply_logits_bias(
self, logits: torch.Tensor, sampling_info: SamplingBatchInfo
......
......@@ -71,10 +71,10 @@ class ModelOutput:
class HFRunner:
def __init__(
self,
model_path,
torch_dtype,
model_type="generation",
output_str_only=False,
model_path: str,
torch_dtype: torch.dtype,
model_type: str = "generation",
output_str_only: bool = False,
):
self.model_type = model_type
self.output_str_only = output_str_only
......@@ -244,15 +244,15 @@ class HFRunner:
class SRTRunner:
def __init__(
self,
model_path,
torch_dtype,
model_type,
tp_size=1,
port=DEFAULT_PORT_FOR_SRT_TEST_RUNNER,
lora_paths=None,
max_loras_per_batch=4,
disable_cuda_graph=False,
disable_radix_cache=False,
model_path: str,
torch_dtype: torch.dtype,
model_type: str,
tp_size: int = 1,
port: int = DEFAULT_PORT_FOR_SRT_TEST_RUNNER,
lora_paths: List[str] = None,
max_loras_per_batch: int = 4,
disable_cuda_graph: bool = False,
disable_radix_cache: bool = False,
):
self.model_type = model_type
self.is_generation = model_type == "generation"
......
......@@ -15,7 +15,6 @@ limitations under the License.
import multiprocessing as mp
import unittest
import uuid
import torch
......@@ -85,9 +84,9 @@ class TestLoRA(unittest.TestCase):
with SRTRunner(
base_path,
tp_size=tp_size,
torch_dtype=torch_dtype,
is_generation=True,
model_type="generation",
tp_size=tp_size,
lora_paths=all_lora_paths,
max_loras_per_batch=3,
disable_cuda_graph=True,
......
......@@ -7,6 +7,7 @@ suites = {
"minimal": [
"models/test_embedding_models.py",
"models/test_generation_models.py",
# "models/test_lora.py",
"models/test_reward_models.py",
"sampling/penaltylib",
"test_chunked_prefill.py",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment