"src/vscode:/vscode.git/clone" did not exist on "c2e48b23f8acf74e2b1efc435b53fb144daa28f6"
Unverified Commit 3de617a7 authored by Lifu Huang's avatar Lifu Huang Committed by GitHub
Browse files

Fix LoRA buffer contamination during adapter eviction (#8103)

parent bb0e8a32
......@@ -188,10 +188,18 @@ class LoRAMemoryPool:
lora_adapter: LoRAAdapter,
lora_modules: Dict[int, Dict[str, BaseLayerWithLoRA]],
):
def check_lora_weight_shape(buffer_view: torch.Tensor, weight: torch.Tensor):
assert (
buffer_view.shape == weight.shape
), f"LoRA buffer shape {buffer_view.shape} does not match weight shape {weight.shape}."
def load_lora_weight_tensor(
buffer_view: torch.Tensor, weight: Optional[torch.Tensor]
):
if weight is None:
# If the particular weight is not present in the adapter, we initialize the buffer to zero
# to avoid contamination from the residual weight of the evicted adapters.
buffer_view.zero_()
else:
assert (
buffer_view.shape == weight.shape
), f"LoRA buffer shape {buffer_view.shape} does not match weight shape {weight.shape}."
buffer_view.copy_(weight)
if uid is None:
for i in range(self.num_layer):
......@@ -203,8 +211,12 @@ class LoRAMemoryPool:
lora_rank = lora_adapter.config.hf_config["r"]
for layer_id in range(self.num_layer):
layer_weights = lora_adapter.layers[layer_id].weights
temp_A_buffer: Dict[str, torch.Tensor] = {}
temp_B_buffer: Dict[str, torch.Tensor] = {}
temp_A_buffer: Dict[str, Optional[torch.Tensor]] = {
weight_name: None for weight_name in self.A_buffer
}
temp_B_buffer: Dict[str, Optional[torch.Tensor]] = {
weight_name: None for weight_name in self.B_buffer
}
for name, weights in layer_weights.items():
if "lora_A" in name:
lora_weight_name = get_weight_name(
......@@ -220,6 +232,14 @@ class LoRAMemoryPool:
if self.tp_size > 1:
cur_layer_modules = lora_modules[layer_id]
for module_name, module in cur_layer_modules.items():
weight_name = get_weight_name(
module_name, self.lora_weight_names, LoRAType.LORA_A
)
if temp_A_buffer[weight_name] is None:
# Skip weight slicing if the weight is not present in the adapter
continue
if "qkv_proj" in module_name:
temp_A_buffer["qkv_proj"] = module.slice_lora_a_weights(
temp_A_buffer["qkv_proj"], self.tp_rank
......@@ -231,9 +251,10 @@ class LoRAMemoryPool:
)
)
else:
weight_name = get_weight_name(
module_name, self.lora_weight_names, LoRAType.LORA_A
)
# TODO (lifuhuang): Ideally, we should call `get_weight_name` separately for both A and B.
# Currently, we're reusing A's weight name as a workaround, relying on the fact that A and
# B share the same name except for `qkv_proj`. We should clean this up once we deprecate the
# FlashInfer LoRA backend.
temp_A_buffer[weight_name] = module.slice_lora_a_weights(
temp_A_buffer[weight_name], self.tp_rank
)
......@@ -246,8 +267,7 @@ class LoRAMemoryPool:
buffer_view = self.A_buffer[name][layer_id][buffer_id][
: lora_rank * c, :
]
check_lora_weight_shape(buffer_view, weights)
buffer_view.copy_(weights)
load_lora_weight_tensor(buffer_view, weights)
for name, weights in temp_B_buffer.items():
c = get_stacked_multiply(name)
......@@ -256,14 +276,15 @@ class LoRAMemoryPool:
buffer_view = self.B_buffer[name][layer_id][stacked_id][
buffer_id
][:, :lora_rank]
check_lora_weight_shape(buffer_view, weights[stacked_id])
buffer_view.copy_(weights[stacked_id])
weight_slice = (
weights[stacked_id] if weights is not None else None
)
load_lora_weight_tensor(buffer_view, weight_slice)
else:
buffer_view = self.B_buffer[name][layer_id][0][buffer_id][
:, :lora_rank
]
check_lora_weight_shape(buffer_view, weights)
buffer_view.copy_(weights)
load_lora_weight_tensor(buffer_view, weights)
def get_tensor(
self, weight_name: str, layer_id: int, lora_type: LoRAType
......
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import multiprocessing as mp
import unittest
from typing import Dict, List, Tuple
import torch
from sglang.test.runners import SRTRunner
from sglang.test.test_utils import CustomTestCase
PROMPTS = [
"AI is a field of computer science focused on",
"""
### Instruction:
Compose a SQL query that uses the following table: users, and returns the user_id and name of all users whose name that does not have a duplicate in the table.
### Response:
SELECT user_id, name FROM users WHERE name LIKE 'A%';
""",
]
ADAPTERS = [
"faridlazuarda/valadapt-llama-3.1-8B-it-chinese", # target_modules = q, v
"philschmid/code-llama-3-1-8b-text-to-sql-lora", # target_modules = q, k, v, o, gate, up, down
]
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B-Instruct"
class TestLoRAEviction(CustomTestCase):
def test_lora_eviction_with_different_target_modules(self):
"""
Test LoRA eviction with different target modules.
This test runs inference against two LoRA adapters in different orders to force eviction behavior, and ensures
that the outputs of the same (adapter, prompt) pair are consistent across runs.
"""
output_history = {}
self._run_test(ADAPTERS, output_history, reverse=False)
self._run_test(ADAPTERS, output_history, reverse=True)
def _run_test(
self,
lora_paths: List[str],
output_history: Dict[Tuple[str, str], str],
reverse: bool,
repeat: int = 2,
):
max_new_tokens = 256
backend = "triton"
torch_dtype = torch.float16
base_path = BASE_MODEL
assert len(lora_paths) >= 2
# Initialize runners
with SRTRunner(
base_path,
torch_dtype=torch_dtype,
model_type="generation",
lora_paths=lora_paths,
max_loras_per_batch=1,
lora_backend=backend,
disable_radix_cache=True,
) as srt_runner:
adapter_sequence = lora_paths if not reverse else lora_paths[::-1]
for i in range(repeat):
for j, adapter in enumerate(adapter_sequence):
print(
f"\n========== Testing LoRA eviction with adapter '{adapter}' (#{j+1}/{len(adapter_sequence)}), reversed: {reverse}, repeat: {i+1}/{repeat} ---"
)
for prompt in PROMPTS:
print("\nprompt:\n", prompt)
srt_outputs = srt_runner.forward(
[prompt],
max_new_tokens=max_new_tokens,
lora_paths=[adapter],
)
output = srt_outputs.output_strs[0].strip()
print("\noutput:\n", output)
prev_output = output_history.get((adapter, prompt))
if prev_output is not None:
self.assertEqual(
prev_output,
output,
f"Output mismatch for adapter {adapter} and prompt '{prompt}' on repeat {j + 1}, previous: '{prev_output}', current: '{output}'.",
)
else:
output_history[(adapter, prompt)] = output
if __name__ == "__main__":
try:
mp.set_start_method("spawn")
except RuntimeError:
pass
unittest.main(warnings="ignore")
......@@ -14,6 +14,7 @@ class TestFile:
suites = {
"per-commit": [
TestFile("models/lora/test_lora.py", 200),
TestFile("models/lora/test_lora_eviction.py", 120),
TestFile("models/lora/test_lora_backend.py", 99),
TestFile("models/lora/test_multi_lora_backend.py", 60),
TestFile("models/lora/test_lora_cuda_graph.py", 250),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment