Unverified Commit 3d4a8f9b authored by simveit's avatar simveit Committed by GitHub
Browse files

Benchmark for reasoning models (#3532)


Co-authored-by: default avatarChayenne <zhaochen20@outlook.com>
parent 7474bed8
# Run benchmark
This benchmark is primarily intended to be used with reasoning models like `DeepSeek-R1` and its distilled models like `DeepSeek-R1-Distill-Qwen-1.5B`. Please use
```bash
pip install antlr4-python3-runtime
```
for `parse_latex` which we use for symbolic equality check.
## Benchmark sglang
1. Launch the Server
```bash
python3 -m sglang.launch_server --model-path deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --port 30000
```
Note that depending on the GPU this benchmark will take quiet some time. To employ data parallelism please use:
```bash
python3 -m sglang_router.launch_server --model-path deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --port 30000 --dp-size 4
```
2. Benchmarking
We use [suggested](https://github.com/deepseek-ai/DeepSeek-R1) parameters of `temperature=0.6`, `top_p=.95`, `max_new_tokens=32768`. The command line argument `num-tries` can be used to evaluate the model multiple times on the same question. We use the suggested `64` from the repo for AIME 2024. For LIMO, we use `8` as the number of tries due to the size of the dataset.
By default evaluate on LIMO dataset.
```bash
python3 bench_sglang.py --parallel 256 --num-tries 64 --port 30000
```
Evaluate on AIME 2024 dataset.
```bash
python3 bench_sglang.py --parallel 256 --port 30000 --data-path Maxwell-Jia/AIME_2024 --question-key Problem --answer-key Answer --num-tries 64
```
Evaluate on [AIME 2025 I dataset](https://huggingface.co/datasets/opencompass/AIME2025). For benchmark result see [here](https://matharena.ai/).
```bash
python3 bench_sglang.py --parallel 256 --port 30000 --data-path opencompass/AIME2025 --question-key question --answer-key answer --num-tries 64
```
## Results
| Dataset | Num Tries | Accuracy | Reference |
|------------|-----------|----------|-----------|
| LIMO | 8 | 47.7% | ? |
| AIME 2024 | 64 | 33.2% | 28.9% |
| AIME 2025 I| 64 | 29.9% | 25.0% |
# Adapted from https://github.com/deepseek-ai/DeepSeek-Math/blob/main/evaluation/data_processing/answer_extraction.py
import re
import regex
def _fix_fracs(string):
substrs = string.split("\\frac")
new_str = substrs[0]
if len(substrs) > 1:
substrs = substrs[1:]
for substr in substrs:
new_str += "\\frac"
if len(substr) > 0 and substr[0] == "{":
new_str += substr
else:
try:
assert len(substr) >= 2
except:
return string
a = substr[0]
b = substr[1]
if b != "{":
if len(substr) > 2:
post_substr = substr[2:]
new_str += "{" + a + "}{" + b + "}" + post_substr
else:
new_str += "{" + a + "}{" + b + "}"
else:
if len(substr) > 2:
post_substr = substr[2:]
new_str += "{" + a + "}" + b + post_substr
else:
new_str += "{" + a + "}" + b
string = new_str
return string
def _fix_a_slash_b(string):
if len(string.split("/")) != 2:
return string
a = string.split("/")[0]
b = string.split("/")[1]
try:
if "sqrt" not in a:
a = int(a)
if "sqrt" not in b:
b = int(b)
assert string == "{}/{}".format(a, b)
new_string = "\\frac{" + str(a) + "}{" + str(b) + "}"
return new_string
except:
return string
def _fix_sqrt(string):
_string = re.sub(r"\\sqrt(-?[0-9.a-zA-Z]+)", r"\\sqrt{\1}", string)
_string = re.sub(r"\\sqrt\s+(\w+)$", r"\\sqrt{\1}", _string)
return _string
def _fix_tan(string):
_string = re.sub(r"\\tan(-?[0-9.a-zA-Z]+)", r"\\tan{\1}", string)
_string = re.sub(r"\\tan\s+(\w+)$", r"\\tan{\1}", _string)
return _string
def strip_string(string):
string = str(string).strip()
# linebreaks
string = string.replace("\n", "")
# right "."
string = string.rstrip(".")
# remove inverse spaces
string = string.replace("\\!", "")
# string = string.replace("\\ ", "")
# replace \\ with \
# string = string.replace("\\\\", "\\")
# string = string.replace("\\\\", "\\")
if string.startswith("\\text{") and string.endswith("}"):
string = string.split("{", 1)[1][:-1]
# replace tfrac and dfrac with frac
string = string.replace("tfrac", "frac")
string = string.replace("dfrac", "frac")
string = string.replace("cfrac", "frac")
# remove \left and \right
string = string.replace("\\left", "")
string = string.replace("\\right", "")
# Remove unit: miles, dollars if after is not none
_string = re.sub(r"\\text{.*?}$", "", string).strip()
if _string != "" and _string != string:
# print("Warning: unit not removed: '{}' -> '{}'".format(string, _string))
string = _string
# Remove circ (degrees)
string = string.replace("^{\\circ}", "").strip()
string = string.replace("^\\circ", "").strip()
string = regex.sub(r"\{(c|m)?m\}(\^(2|3))?", "", string).strip()
string = regex.sub(r"p\.m\.$", "", string).strip()
string = regex.sub(r"(\d)\s*t$", r"\1", string).strip()
# remove dollar signs
string = string.replace("\\$", "")
string = string.replace("$", "")
# string = string.replace("\\text", "")
string = string.replace("x\\in", "")
# remove percentage
string = string.replace("\\%", "%")
string = string.replace("\%", "%")
# string = string.replace("%", "")
# " 0." equivalent to " ." and "{0." equivalent to "{." Alternatively, add "0" if "." is the start of the string
string = string.replace(" .", " 0.")
string = string.replace("{.", "{0.")
# cdot
string = string.replace("\\cdot", "")
# inf
string = string.replace("infinity", "\\infty")
if "\\infty" not in string:
string = string.replace("inf", "\\infty")
string = string.replace("+\\inity", "\\infty")
# and
# string = string.replace("and", "")
string = string.replace("\\mathbf", "")
string = string.replace("\\mathrm", "")
# use regex to remove \mbox{...}
string = re.sub(r"\\mbox{.*?}", "", string)
# quote
string.replace("'", "")
string.replace('"', "")
# i, j
if "j" in string and "i" not in string:
string = string.replace("j", "i")
# replace a.000b where b is not number or b is end, with ab, use regex
string = re.sub(r"(\d+)\.0+([^\d])", r"\1\2", string)
string = re.sub(r"(\d+)\.0+$", r"\1", string)
# if empty, return empty string
if len(string) == 0:
return string
if string[0] == ".":
string = "0" + string
# to consider: get rid of e.g. "k = " or "q = " at beginning
# if len(string.split("=")) == 2:
# if len(string.split("=")[0]) <= 2:
# string = string.split("=")[1]
string = _fix_sqrt(string)
string = _fix_tan(string)
string = string.replace(" ", "")
# \frac1b or \frac12 --> \frac{1}{b} and \frac{1}{2}, etc. Even works with \frac1{72} (but not \frac{72}1). Also does a/b --> \\frac{a}{b}
string = _fix_fracs(string)
# NOTE: X/Y changed to \frac{X}{Y} in dataset, but in simple cases fix in case the model output is X/Y
string = _fix_a_slash_b(string)
string = regex.sub(r"(\\|,|\.)+$", "", string)
return string
def extract_boxed_answers(text):
answers = []
for piece in text.split("boxed{")[1:]:
n = 0
for i in range(len(piece)):
if piece[i] == "{":
n += 1
elif piece[i] == "}":
n -= 1
if n < 0:
if i + 1 < len(piece) and piece[i + 1] == "%":
answers.append(piece[: i + 1])
else:
answers.append(piece[:i])
break
return answers
def extract_program_output(pred_str):
"""
extract output between the last ```output\n...\n```
"""
if "```output" not in pred_str:
return ""
if "```output" in pred_str:
pred_str = pred_str.split("```output")[-1]
if "```" in pred_str:
pred_str = pred_str.split("```")[0]
output = pred_str.strip()
return output
def extract_answer(pred_str, exhaust=False):
pred = []
if "final answer is $" in pred_str and "$. I hope" in pred_str:
tmp = pred_str.split("final answer is $", 1)[1]
pred = [tmp.split("$. I hope", 1)[0].strip()]
elif "boxed" in pred_str:
pred = extract_boxed_answers(pred_str)
elif "he answer is" in pred_str:
pred = [pred_str.split("he answer is")[-1].strip()]
else:
program_output = extract_program_output(pred_str)
if program_output != "":
# fall back to program
pred.append(program_output)
else: # use the last number
pattern = "-?\d*\.?\d+"
ans = re.findall(pattern, pred_str.replace(",", ""))
if len(ans) >= 1:
ans = ans[-1]
else:
ans = ""
if ans:
pred.append(ans)
# multiple line
_pred = []
for ans in pred:
ans = ans.strip().split("\n")[0]
ans = ans.lstrip(":")
ans = ans.rstrip(".")
ans = ans.rstrip("/")
ans = strip_string(ans)
_pred.append(ans)
if exhaust:
return _pred
else:
return _pred[-1] if _pred else ""
def extract_math_answer(question, reasoning, task):
answer = []
for ans in extract_answer(reasoning, exhaust=True):
if "separated by commas" in question and all(ch not in ans for ch in "()[]"):
answer.extend([a.strip() for a in ans.split(",")])
elif regex.search(r"\\text\{\s*and\s*\}", ans):
answer.extend(
[
a.strip()
for a in regex.sub(r"\\text\{\s*and\s*\}", "[SEP]", ans).split(
"[SEP]"
)
]
)
else:
answer.append(ans.strip())
return answer
import argparse
import json
import time
import answer_extraction
import eval_utils
from datasets import load_dataset
import sglang as sgl
from sglang.test.test_utils import (
add_common_sglang_args_and_parse,
select_sglang_backend,
)
from sglang.utils import dump_state_text
@sgl.function
def reasoning_gen(s, question: str):
s += sgl.user(
question
+ "\nPlease reason step by step, and put your final answer within \boxed{}."
)
s += sgl.assistant(
sgl.gen(
"answer",
)
)
def convert_dataset(path: str, question_key: str, answer_key: str, num_tries: int):
raw_dataset = load_dataset(path)
questions = []
answers = []
for data in raw_dataset["train"]:
question = data[question_key]
answer = data[answer_key]
for _ in range(num_tries):
questions.append({"question": question})
answers.append({"answer": answer})
return questions, answers
def main(args):
# Select backend
sgl.set_default_backend(select_sglang_backend(args))
# Get dataset
questions, answers = convert_dataset(
args.data_path, args.question_key, args.answer_key, args.num_tries
)
# Run requests
tic = time.time()
states = reasoning_gen.run_batch(
questions,
num_threads=args.parallel,
progress_bar=True,
temperature=0.6,
max_new_tokens=32768,
top_p=0.95,
)
latency = time.time() - tic
# Extract answers
correct = 0
for i, state in enumerate(states):
try:
pred_answer = answer_extraction.extract_math_answer(
questions[i]["question"], state["answer"], "limo"
)
gt_answer = str(answers[i]["answer"])
# Use last answer if multiple were extracted
pred_answer = (
pred_answer[-1] if isinstance(pred_answer, list) else pred_answer
)
correct += 1 if eval_utils.math_equal(pred_answer, gt_answer) else 0
except Exception as e:
print(f"Error extracting answer: {e}")
pass
# Calculate accuracy
accuracy = correct / len(questions)
print(f"Accuracy: {accuracy}")
# Calculate output throughput
num_output_tokens = sum(
s.get_meta_info("answer")["completion_tokens"] for s in states
)
output_throughput = num_output_tokens / latency
print(f"Output throughput: {output_throughput} token/s")
# Dump results
dump_state_text(f"tmp_output_{args.backend}.txt", states)
# Write results
with open(args.result_file, "a") as fout:
value = {
"task": "limo",
"backend": args.backend,
"latency": round(latency, 3),
"accuracy": round(accuracy, 3),
"num_requests": len(questions),
"other": {
"num_questions": len(questions),
"parallel": args.parallel,
},
}
fout.write(json.dumps(value) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-path", type=str, default="GAIR/LIMO")
parser.add_argument("--question-key", type=str, default="question")
parser.add_argument("--answer-key", type=str, default="answer")
parser.add_argument("--num-tries", type=int, default=1)
add_common_sglang_args_and_parse(parser)
args = parser.parse_args()
main(args)
# Adapted from https://github.com/deepseek-ai/DeepSeek-Math/blob/main/evaluation/eval/eval_utils.py
from math import isclose
import regex
from sympy import N, simplify
from sympy.parsing.latex import parse_latex
from sympy.parsing.sympy_parser import parse_expr
def parse_digits(num):
# format: 234.23 || 23%
num = regex.sub(",", "", str(num))
try:
return float(num)
except:
if num.endswith("%"):
num = num[:-1]
if num.endswith("\\"):
num = num[:-1]
try:
return float(num) / 100
except:
pass
return None
def is_digit(num):
# paired with parse_digits
return parse_digits(num) is not None
def symbolic_equal(a, b):
def _parse(s):
for f in [parse_latex, parse_expr]:
try:
return f(s)
except:
pass
return s
a = _parse(a)
b = _parse(b)
try:
if simplify(a - b) == 0:
return True
except:
pass
try:
if isclose(N(a), N(b), abs_tol=1e-3):
return True
except:
pass
return False
def math_equal(prediction, reference, include_percentage=True, is_close=True):
"""
Exact match of math if and only if:
1. numerical equal: both can convert to float and are equal
2. symbolic equal: both can convert to sympy expression and are equal
"""
if str(prediction) == str(reference):
return True
try: # 1. numerical equal
if is_digit(prediction) and is_digit(reference):
prediction = parse_digits(prediction)
reference = parse_digits(reference)
# number questions
if include_percentage:
gt_result = [reference / 100, reference, reference * 100]
else:
gt_result = [reference]
for item in gt_result:
try:
if is_close:
if isclose(item, prediction, abs_tol=1e-3):
return True
else:
if item == prediction:
return True
except Exception:
continue
return False
except:
pass
if not prediction and prediction not in [0, False]:
return False
# 2. symbolic equal
reference = str(reference).strip()
prediction = str(prediction).strip()
if (
regex.match(r"(\(|\[).+(\)|\])", prediction) is not None
and regex.match(r"(\(|\[).+(\)|\])", reference) is not None
):
pred_parts = prediction[1:-1].split(",")
ref_parts = reference[1:-1].split(",")
if len(pred_parts) == len(ref_parts):
if all(
[
math_equal(
pred_parts[i], ref_parts[i], include_percentage, is_close
)
for i in range(len(pred_parts))
]
):
return True
# Add back matrix comparison
if (
(
prediction.startswith("\\begin{pmatrix}")
or prediction.startswith("\\begin{bmatrix}")
)
and (
prediction.endswith("\\end{pmatrix}")
or prediction.endswith("\\end{bmatrix}")
)
and (
reference.startswith("\\begin{pmatrix}")
or reference.startswith("\\begin{bmatrix}")
)
and (
reference.endswith("\\end{pmatrix}") or reference.endswith("\\end{bmatrix}")
)
):
pred_lines = [
line.strip()
for line in prediction[
len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
].split("\\\\")
if line.strip()
]
ref_lines = [
line.strip()
for line in reference[
len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
].split("\\\\")
if line.strip()
]
matched = True
if len(pred_lines) == len(ref_lines):
for pred_line, ref_line in zip(pred_lines, ref_lines):
pred_parts = pred_line.split("&")
ref_parts = ref_line.split("&")
if len(pred_parts) == len(ref_parts):
if not all(
[
math_equal(
pred_parts[i],
ref_parts[i],
include_percentage,
is_close,
)
for i in range(len(pred_parts))
]
):
matched = False
break
else:
matched = False
if not matched:
break
else:
matched = False
if matched:
return True
# Add back equation comparison
if prediction.count("=") == 1 and reference.count("=") == 1:
pred = prediction.split("=")
pred = f"{pred[0].strip()} - ({pred[1].strip()})"
ref = reference.split("=")
ref = f"{ref[0].strip()} - ({ref[1].strip()})"
if symbolic_equal(pred, ref) or symbolic_equal(f"-({pred})", ref):
return True
elif (
prediction.count("=") == 1
and len(prediction.split("=")[0].strip()) <= 2
and "=" not in reference
):
if math_equal(
prediction.split("=")[1], reference, include_percentage, is_close
):
return True
elif (
reference.count("=") == 1
and len(reference.split("=")[0].strip()) <= 2
and "=" not in prediction
):
if math_equal(
prediction, reference.split("=")[1], include_percentage, is_close
):
return True
# symbolic equal with sympy
if symbolic_equal(prediction, reference):
return True
return False
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment