Unverified Commit 3ae78a09 authored by Arcmoon's avatar Arcmoon Committed by GitHub
Browse files

Add gptq quantization model support (#141)

parent ccbe1e67
...@@ -19,10 +19,9 @@ class RadixAttention(nn.Module): ...@@ -19,10 +19,9 @@ class RadixAttention(nn.Module):
head_dim, head_dim,
scaling, scaling,
num_kv_heads, num_kv_heads,
layer_id, layer_id
): ):
super().__init__() super().__init__()
self.tp_q_head_num = num_heads self.tp_q_head_num = num_heads
self.tp_k_head_num = num_kv_heads self.tp_k_head_num = num_kv_heads
self.tp_v_head_num = num_kv_heads self.tp_v_head_num = num_kv_heads
......
...@@ -12,10 +12,13 @@ from sglang.srt.memory_pool import ReqToTokenPool, TokenToKVPool ...@@ -12,10 +12,13 @@ from sglang.srt.memory_pool import ReqToTokenPool, TokenToKVPool
from sglang.srt.utils import is_multimodal_model from sglang.srt.utils import is_multimodal_model
from sglang.utils import get_available_gpu_memory from sglang.utils import get_available_gpu_memory
from vllm.model_executor.layers.quantization.awq import AWQConfig from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
from vllm.model_executor.model_loader import _set_default_torch_dtype from vllm.model_executor.model_loader import _set_default_torch_dtype
from vllm.model_executor.parallel_utils.parallel_state import initialize_model_parallel from vllm.model_executor.parallel_utils.parallel_state import initialize_model_parallel
import sglang import sglang
QUANTIONCONFIG_MAPPING = {'awq': AWQConfig,
'gptq': GPTQConfig}
logger = logging.getLogger("model_runner") logger = logging.getLogger("model_runner")
...@@ -280,8 +283,10 @@ class ModelRunner: ...@@ -280,8 +283,10 @@ class ModelRunner:
self.model_config.hf_config, "quantization_config", None self.model_config.hf_config, "quantization_config", None
) )
if hf_quant_config is not None: if hf_quant_config is not None:
# TODO: config quantization awq etc quant_config_class = QUANTIONCONFIG_MAPPING.get(hf_quant_config['quant_method'])
quant_config = AWQConfig.from_config(hf_quant_config) if quant_config_class is None:
raise ValueError(f"Unsupported quantization method: {hf_quant_config['quant_method']}")
quant_config = quant_config_class.from_config(hf_quant_config)
logger.info(f"quant_config: {quant_config}") logger.info(f"quant_config: {quant_config}")
linear_method = quant_config.get_linear_method() linear_method = quant_config.get_linear_method()
model = model_class( model = model_class(
......
...@@ -34,6 +34,7 @@ class QWenMLP(nn.Module): ...@@ -34,6 +34,7 @@ class QWenMLP(nn.Module):
hidden_size: int, hidden_size: int,
intermediate_size: int, intermediate_size: int,
hidden_act: str = "silu", hidden_act: str = "silu",
linear_method: Optional[LinearMethodBase] = None,
): ):
super().__init__() super().__init__()
self.gate_up_proj = MergedColumnParallelLinear( self.gate_up_proj = MergedColumnParallelLinear(
...@@ -41,12 +42,14 @@ class QWenMLP(nn.Module): ...@@ -41,12 +42,14 @@ class QWenMLP(nn.Module):
2 * [intermediate_size], 2 * [intermediate_size],
bias=False, bias=False,
gather_output=False, gather_output=False,
linear_method=linear_method
) )
self.c_proj = RowParallelLinear( self.c_proj = RowParallelLinear(
intermediate_size, intermediate_size,
hidden_size, hidden_size,
bias=False, bias=False,
input_is_parallel=True, input_is_parallel=True,
linear_method=linear_method
) )
if hidden_act != "silu": if hidden_act != "silu":
raise ValueError( raise ValueError(
...@@ -71,6 +74,7 @@ class QWenAttention(nn.Module): ...@@ -71,6 +74,7 @@ class QWenAttention(nn.Module):
layer_id: int = 0, layer_id: int = 0,
rope_theta: float = 10000, rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None, rope_scaling: Optional[Dict[str, Any]] = None,
linear_method: Optional[LinearMethodBase] = None
): ):
super().__init__() super().__init__()
self.hidden_size = hidden_size self.hidden_size = hidden_size
...@@ -82,13 +86,18 @@ class QWenAttention(nn.Module): ...@@ -82,13 +86,18 @@ class QWenAttention(nn.Module):
# pylint: disable=invalid-name # pylint: disable=invalid-name
self.c_attn = QKVParallelLinear( self.c_attn = QKVParallelLinear(
hidden_size, self.head_dim, self.total_num_heads, bias=True hidden_size,
self.head_dim,
self.total_num_heads,
bias=True,
linear_method=linear_method
) )
self.c_proj = RowParallelLinear( self.c_proj = RowParallelLinear(
self.total_num_heads * self.head_dim, self.total_num_heads * self.head_dim,
hidden_size, hidden_size,
bias=False, bias=False,
input_is_parallel=True, input_is_parallel=True,
linear_method=linear_method
) )
self.rotary_emb = get_rope( self.rotary_emb = get_rope(
self.head_dim, self.head_dim,
...@@ -121,7 +130,7 @@ class QWenAttention(nn.Module): ...@@ -121,7 +130,7 @@ class QWenAttention(nn.Module):
class QWenBlock(nn.Module): class QWenBlock(nn.Module):
def __init__(self, config: QWenConfig, layer_id): def __init__(self, config: QWenConfig, layer_id, linear_method=None):
super().__init__() super().__init__()
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
...@@ -134,11 +143,12 @@ class QWenBlock(nn.Module): ...@@ -134,11 +143,12 @@ class QWenBlock(nn.Module):
rope_theta=rope_theta, rope_theta=rope_theta,
rope_scaling=rope_scaling, rope_scaling=rope_scaling,
layer_id=layer_id, layer_id=layer_id,
linear_method=linear_method
) )
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mlp = QWenMLP(config.hidden_size, config.intermediate_size // 2) self.mlp = QWenMLP(config.hidden_size, config.intermediate_size // 2, linear_method=linear_method)
def forward( def forward(
self, self,
...@@ -165,7 +175,7 @@ class QWenBlock(nn.Module): ...@@ -165,7 +175,7 @@ class QWenBlock(nn.Module):
class QWenModel(nn.Module): class QWenModel(nn.Module):
def __init__(self, config: QWenConfig): def __init__(self, config: QWenConfig, linear_method=None):
super().__init__() super().__init__()
self.config = config self.config = config
self.vocab_size = config.vocab_size self.vocab_size = config.vocab_size
...@@ -176,7 +186,7 @@ class QWenModel(nn.Module): ...@@ -176,7 +186,7 @@ class QWenModel(nn.Module):
config.hidden_size, config.hidden_size,
) )
self.h = nn.ModuleList( self.h = nn.ModuleList(
[QWenBlock(config, i) for i in range(config.num_hidden_layers)] [QWenBlock(config, i, linear_method=linear_method) for i in range(config.num_hidden_layers)]
) )
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
...@@ -202,7 +212,7 @@ class QWenLMHeadModel(nn.Module): ...@@ -202,7 +212,7 @@ class QWenLMHeadModel(nn.Module):
def __init__(self, config: QWenConfig, linear_method=None): def __init__(self, config: QWenConfig, linear_method=None):
super().__init__() super().__init__()
self.config = config self.config = config
self.transformer = QWenModel(config) self.transformer = QWenModel(config, linear_method=linear_method)
vocab_size = ((config.vocab_size + 63) // 64) * 64 vocab_size = ((config.vocab_size + 63) // 64) * 64
self.lm_head = ParallelLMHead(vocab_size, config.hidden_size) self.lm_head = ParallelLMHead(vocab_size, config.hidden_size)
self.logits_processor = LogitsProcessor(config) self.logits_processor = LogitsProcessor(config)
...@@ -219,9 +229,6 @@ class QWenLMHeadModel(nn.Module): ...@@ -219,9 +229,6 @@ class QWenLMHeadModel(nn.Module):
) )
return next_tokens return next_tokens
_column_parallel_weights = []
_row_parallel_weights = ["c_proj.weight"]
def load_weights( def load_weights(
self, self,
model_name_or_path: str, model_name_or_path: str,
......
...@@ -259,4 +259,4 @@ def load_image(image_file): ...@@ -259,4 +259,4 @@ def load_image(image_file):
else: else:
image = Image.open(BytesIO(base64.b64decode(image_file))) image = Image.open(BytesIO(base64.b64decode(image_file)))
return image return image
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment