Unverified Commit 39d90449 authored by Yineng Zhang's avatar Yineng Zhang Committed by GitHub
Browse files

feat: update experiment_runner (#5360)

parent 39e41138
tasks:
- name: sglang-8192-1024-concurrency1
server_cmd: python3 -m sglang.launch_server --model nvidia/Llama-3.1-405B-Instruct-FP8 --tp 8
client_cmd: python3 -m sglang.bench_serving --random-range-ratio 1 --random-input-len 8192 --random-output-len 1024 --max-concurrency 1 --num-prompts 5 --output-file llama_405b_results.jsonl
- name: sglang-8192-1024-concurrency2
server_cmd: python3 -m sglang.launch_server --model nvidia/Llama-3.1-405B-Instruct-FP8 --tp 8
client_cmd: python3 -m sglang.bench_serving --random-range-ratio 1 --random-input-len 8192 --random-output-len 1024 --max-concurrency 2 --num-prompts 10 --output-file llama_405b_results.jsonl
- name: sglang-8192-1024-concurrency4
server_cmd: python3 -m sglang.launch_server --model nvidia/Llama-3.1-405B-Instruct-FP8 --tp 8
client_cmd: python3 -m sglang.bench_serving --random-range-ratio 1 --random-input-len 8192 --random-output-len 1024 --max-concurrency 4 --num-prompts 20 --output-file llama_405b_results.jsonl
- name: sglang-8192-1024-concurrency8
server_cmd: python3 -m sglang.launch_server --model nvidia/Llama-3.1-405B-Instruct-FP8 --tp 8
client_cmd: python3 -m sglang.bench_serving --random-range-ratio 1 --random-input-len 8192 --random-output-len 1024 --max-concurrency 8 --num-prompts 32 --output-file llama_405b_results.jsonl
- name: sglang-8192-1024-concurrency16
server_cmd: python3 -m sglang.launch_server --model nvidia/Llama-3.1-405B-Instruct-FP8 --tp 8
client_cmd: python3 -m sglang.bench_serving --random-range-ratio 1 --random-input-len 8192 --random-output-len 1024 --max-concurrency 16 --num-prompts 48 --output-file llama_405b_results.jsonl
- name: sglang-8192-1024-concurrency24
server_cmd: python3 -m sglang.launch_server --model nvidia/Llama-3.1-405B-Instruct-FP8 --tp 8
client_cmd: python3 -m sglang.bench_serving --random-range-ratio 1 --random-input-len 8192 --random-output-len 1024 --max-concurrency 24 --num-prompts 72 --output-file llama_405b_results.jsonl
- name: sglang-8192-1024-concurrency32
server_cmd: python3 -m sglang.launch_server --model nvidia/Llama-3.1-405B-Instruct-FP8 --tp 8
client_cmd: python3 -m sglang.bench_serving --random-range-ratio 1 --random-input-len 8192 --random-output-len 1024 --max-concurrency 32 --num-prompts 96 --output-file llama_405b_results.jsonl
......@@ -317,6 +317,11 @@ def format_results(results: List[TaskResult]) -> str:
return "\n".join(output)
def get_bool_env_var(name: str, default: str = "false") -> bool:
value = os.getenv(name, default)
return value.lower() in ("true", "1")
def write_in_github_step_summary(results: List[TaskResult]):
"""Write formatted results to GitHub step summary."""
if not os.environ.get("GITHUB_STEP_SUMMARY"):
......@@ -349,7 +354,8 @@ def main():
result = runner.run_task(config)
results.append(result)
write_in_github_step_summary(results)
if get_bool_env_var("SGLANG_IS_IN_CI"):
write_in_github_step_summary(results)
except Exception as e:
logger.error(f"Error: {e}")
raise
......
import json
import pandas as pd
import argparse
import os
from tabulate import tabulate
# Parse command-line arguments
parser = argparse.ArgumentParser(description="Parse JSONL benchmark and summarize.")
parser.add_argument("input_file", type=str, help="Path to input JSONL file")
args = parser.parse_args()
input_file = args.input_file
base_name = os.path.splitext(os.path.basename(input_file))[0]
output_file = f"{base_name}_summary.csv"
fields = [
"max_concurrency",
"output_throughput",
"mean_ttft_ms",
"median_ttft_ms",
"p99_ttft_ms",
"mean_tpot_ms",
"median_tpot_ms",
"p99_tpot_ms",
]
# Read JSONL and parse
results = []
with open(input_file, "r") as f:
for line in f:
data = json.loads(line)
row = {field: data.get(field, None) for field in fields}
max_conc = data.get("max_concurrency")
out_tp = data.get("output_throughput")
row["per_user_throughput"] = out_tp / max_conc if max_conc else None
results.append(row)
# Convert to DataFrame
df = pd.DataFrame(results)
# Save to CSV
df.to_csv(output_file, index=False)
print(f"\nSaved summary to: {output_file}\n")
# Print ASCII table
print(tabulate(df, headers="keys", tablefmt="grid", floatfmt=".3f"))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment