Unverified Commit 37d83c6e authored by Lzhang-hub's avatar Lzhang-hub Committed by GitHub
Browse files

Qwen2.5-VL eagle3 infer (#8801)

parent 7802586c
......@@ -629,6 +629,7 @@ def general_mm_embed_routine(
embed_tokens = language_model.get_input_embeddings()
if (
not forward_batch.forward_mode.is_decode()
and not forward_batch.forward_mode.is_target_verify()
and forward_batch.contains_mm_inputs()
):
mm_inputs_list = [
......
......@@ -317,7 +317,9 @@ class CudaGraphRunner:
(self.max_num_token,), dtype=self._cache_loc_dtype()
)
self.positions = torch.zeros((self.max_num_token,), dtype=torch.int64)
self.mrope_positions = torch.zeros((3, self.max_bs), dtype=torch.int64)
self.mrope_positions = torch.zeros(
(3, self.max_num_token), dtype=torch.int64
)
self.num_token_non_padded = torch.zeros((1,), dtype=torch.int32)
self.tbo_plugin = TboCudaGraphRunnerPlugin()
......@@ -532,7 +534,7 @@ class CudaGraphRunner:
encoder_lens = self.encoder_lens[:bs]
else:
encoder_lens = None
mrope_positions = self.mrope_positions[:, :bs]
mrope_positions = self.mrope_positions[:, :num_tokens]
next_token_logits_buffer = self.next_token_logits_buffer[:num_tokens]
self.num_token_non_padded[...] = num_tokens
......@@ -751,7 +753,7 @@ class CudaGraphRunner:
if self.is_encoder_decoder:
self.encoder_lens[:raw_bs].copy_(forward_batch.encoder_lens)
if forward_batch.mrope_positions is not None:
self.mrope_positions[:, :raw_bs].copy_(forward_batch.mrope_positions)
self.mrope_positions[:, :raw_num_token].copy_(forward_batch.mrope_positions)
if self.require_gathered_buffer:
self.global_num_tokens_gpu.fill_(bs * self.num_tokens_per_bs)
self.global_num_tokens_for_logprob_gpu.fill_(bs * self.num_tokens_per_bs)
......
......@@ -441,7 +441,13 @@ class ForwardBatch:
ret.extend_logprob_start_lens_cpu = batch.extend_logprob_start_lens
if model_runner.model_is_mrope:
ret._compute_mrope_positions(model_runner, batch)
if (
ret.spec_info is not None
and getattr(ret.spec_info, "positions", None) is not None
):
ret._compute_spec_mrope_positions(model_runner, batch)
else:
ret._compute_mrope_positions(model_runner, batch)
# Init lora information
if model_runner.server_args.enable_lora:
......@@ -507,6 +513,52 @@ class ForwardBatch:
or self.contains_image_inputs()
)
def _compute_spec_mrope_positions(
self, model_runner: ModelRunner, batch: ModelWorkerBatch
):
# TODO support batched deltas
batch_size = self.seq_lens.shape[0]
device = model_runner.device
mm_inputs = batch.multimodal_inputs
if batch.forward_mode.is_draft_extend(): # draft_extend_after_decode
mrope_deltas = []
extend_lens = []
for batch_idx in range(batch_size):
extend_seq_len = batch.extend_seq_lens[batch_idx]
extend_lens.append(extend_seq_len)
mrope_delta = (
torch.zeros(1, dtype=torch.int64)
if mm_inputs[batch_idx] is None
else mm_inputs[batch_idx].mrope_position_delta.squeeze(0)
)
mrope_deltas.append(mrope_delta.to(device=device))
position_chunks = torch.split(batch.spec_info.positions, extend_lens)
mrope_positions_list = [
pos_chunk + delta
for pos_chunk, delta in zip(position_chunks, mrope_deltas)
]
next_input_positions = (
torch.cat(mrope_positions_list, dim=0).unsqueeze(0).repeat(3, 1)
)
else: # target_verify or draft_decode
seq_positions = batch.spec_info.positions.view(batch_size, -1)
mrope_deltas = [
(
torch.tensor([0], dtype=torch.int64)
if mm_inputs[i] is None
else mm_inputs[i].mrope_position_delta.squeeze(0)
)
for i in range(batch_size)
]
mrope_delta_tensor = torch.stack(mrope_deltas, dim=0).to(device=device)
next_input_positions = (
(seq_positions + mrope_delta_tensor).flatten().unsqueeze(0).repeat(3, 1)
)
self.mrope_positions = next_input_positions
def _compute_mrope_positions(
self, model_runner: ModelRunner, batch: ModelWorkerBatch
):
......
......@@ -109,6 +109,16 @@ class LlamaModel(nn.Module):
) -> None:
super().__init__()
self.config = config
self.is_mrope_enabled = (
hasattr(config, "rope_scaling")
and config.rope_scaling is not None
and "mrope_section" in config.rope_scaling
)
# fix rope_scaling for qwen2.5-vl
if self.is_mrope_enabled:
config.rope_scaling["rope_type"] = "default"
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
......@@ -144,6 +154,9 @@ class LlamaModel(nn.Module):
else:
embeds = input_embeds
if self.is_mrope_enabled:
positions = forward_batch.mrope_positions
hidden_states = forward_batch.spec_info.hidden_states
if hidden_states.shape[-1] != embeds.shape[-1]:
hidden_states = self.fc(hidden_states)
......
......@@ -454,6 +454,9 @@ class Qwen2ForCausalLM(nn.Module):
# For EAGLE3 support
self.capture_aux_hidden_states = False
# For EAGLE3 support
self.capture_aux_hidden_states = False
def get_input_embedding(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embedding(input_ids)
......@@ -481,6 +484,10 @@ class Qwen2ForCausalLM(nn.Module):
if self.capture_aux_hidden_states:
hidden_states, aux_hidden_states = hidden_states
aux_hidden_states = None
if self.capture_aux_hidden_states:
hidden_states, aux_hidden_states = hidden_states
if self.pp_group.is_last_rank:
if not get_embedding:
return self.logits_processor(
......
......@@ -518,6 +518,9 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module):
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
# For EAGLE3 support
self.capture_aux_hidden_states = False
def pad_input_ids(self, input_ids: List[int], mm_inputs: MultimodalInputs):
pattern = MultiModalityDataPaddingPatternMultimodalTokens()
return pattern.pad_input_tokens(input_ids, mm_inputs)
......@@ -588,9 +591,13 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module):
positions=positions,
)
aux_hidden_states = None
if self.capture_aux_hidden_states:
hidden_states, aux_hidden_states = hidden_states
if not get_embedding:
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
input_ids, hidden_states, self.lm_head, forward_batch, aux_hidden_states
)
else:
return self.pooler(hidden_states, forward_batch)
......@@ -644,5 +651,21 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module):
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
def get_embed_and_head(self):
return self.model.embed_tokens.weight, self.lm_head.weight
def set_eagle3_layers_to_capture(self, layer_ids: Optional[List[int]] = None):
self.capture_aux_hidden_states = True
self.model.capture_aux_hidden_states = True
if layer_ids is None:
num_layers = self.config.num_hidden_layers
self.model.layers_to_capture = [
2,
num_layers // 2,
num_layers - 3,
] # Specific layers for EAGLE3 support
else:
self.model.layers_to_capture = [val + 1 for val in layer_ids]
EntryClass = [Qwen2_5_VLForConditionalGeneration]
......@@ -91,6 +91,9 @@ class EAGLEDraftCudaGraphRunner:
(self.max_num_token * self.speculative_num_steps,), dtype=torch.int64
)
self.positions = torch.zeros((self.max_num_token,), dtype=torch.int64)
self.mrope_positions = torch.zeros(
(3, self.max_num_token), dtype=torch.int64
)
self.topk_p = torch.zeros((self.max_bs, self.topk), dtype=torch.float32)
self.topk_index = torch.zeros((self.max_bs, self.topk), dtype=torch.int64)
self.hidden_states = torch.zeros(
......@@ -159,6 +162,7 @@ class EAGLEDraftCudaGraphRunner:
seq_lens = self.seq_lens[:num_seqs]
out_cache_loc = self.out_cache_loc[: num_tokens * self.speculative_num_steps]
positions = self.positions[:num_tokens]
mrope_positions = self.mrope_positions[:, :num_tokens]
topk_p = self.topk_p[:num_seqs]
topk_index = self.topk_index[:num_seqs]
hidden_states = self.hidden_states[:num_seqs]
......@@ -224,6 +228,7 @@ class EAGLEDraftCudaGraphRunner:
seq_lens_sum=seq_lens.sum().item(),
return_logprob=False,
positions=positions,
mrope_positions=mrope_positions,
global_num_tokens_gpu=global_num_tokens,
dp_padding_mode=DpPaddingMode.get_default_mode_in_cuda_graph(),
global_dp_buffer_len=global_dp_buffer_len,
......
......@@ -80,6 +80,9 @@ class EAGLEDraftExtendCudaGraphRunner:
self.req_pool_indices = torch.zeros((self.max_bs,), dtype=torch.int32)
self.out_cache_loc = torch.ones((self.max_num_token,), dtype=torch.int64)
self.positions = torch.zeros((self.max_num_token,), dtype=torch.int64)
self.mrope_positions = torch.zeros(
(3, self.max_num_token), dtype=torch.int64
)
if self.eagle_worker.speculative_algorithm.is_eagle3():
self.hidden_states = torch.zeros(
......@@ -189,6 +192,7 @@ class EAGLEDraftExtendCudaGraphRunner:
accept_length = self.accept_length[:bs]
out_cache_loc = self.out_cache_loc[:num_tokens]
positions = self.positions[:num_tokens]
mrope_positions = self.mrope_positions[:, :num_tokens]
hidden_states = self.hidden_states[:num_tokens]
next_token_logits_buffer = self.next_token_logits_buffer[:bs]
......@@ -247,6 +251,7 @@ class EAGLEDraftExtendCudaGraphRunner:
seq_lens_sum=seq_lens.sum().item(),
return_logprob=False,
positions=positions,
mrope_positions=mrope_positions,
global_num_tokens_gpu=self.global_num_tokens_gpu,
global_num_tokens_for_logprob_gpu=self.global_num_tokens_for_logprob_gpu,
dp_padding_mode=DpPaddingMode.get_default_mode_in_cuda_graph(),
......
......@@ -14,6 +14,7 @@ from sglang.srt.distributed import (
)
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.layers.sampler import get_token_ids_logprobs, get_top_logprobs
from sglang.srt.managers.mm_utils import embed_mm_inputs
from sglang.srt.managers.schedule_batch import (
ScheduleBatch,
get_last_loc,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment