### Integrating Third-Party Libraries with Data Type Conversion
When integrating new third-party libraries like flash-attention, you may encounter data type compatibility issues between the C++ interface and PyTorch bindings. For example, the third-party code might use `float` or `int` types, while PyTorch requires `double` and `int64_t`.
To address this issue, we provide the `make_pytorch_shim` function in [sgl_kernel_torch_shim](https://github.com/sgl-project/sglang/blob/main/sgl-kernel/include/sgl_kernel_torch_shim.h) that handles data type conversions automatically.
When you need to support new data type conversions, you can easily add conversion functions like this:
```cpp
// Map `int` -> `int64_t`
template<>
structpytorch_library_compatible_type<int>{
usingtype=int64_t;
staticintconvert_from_type(int64_targ){
TORCH_CHECK(arg<=std::numeric_limits<int>::max(),"int64_t value is too large to be converted to int");
TORCH_CHECK(arg>=std::numeric_limits<int>::min(),"int64_t value is too small to be converted to int");
returnarg;
}
};
```
To use this with your library functions, simply wrap them with make_pytorch_shim: