Unverified Commit 30b4f771 authored by Chayenne's avatar Chayenne Committed by GitHub
Browse files

Support Alibaba-NLP/gte-Qwen2-7B-instruct embedding Model (#1186)


Co-authored-by: default avatarYing Sheng <sqy1415@gmail.com>
parent 66e7dcaf
......@@ -43,4 +43,4 @@ jobs:
run: |
cd test/srt
python3 test_eval_accuracy_large.py
timeout-minutes: 10
timeout-minutes: 20
......@@ -41,7 +41,7 @@ jobs:
run: |
cd test/srt
python3 run_suite.py --suite minimal
timeout-minutes: 18
timeout-minutes: 20
- name: Test Frontend Language
run: |
......
......@@ -187,6 +187,13 @@ response = client.chat.completions.create(
max_tokens=64,
)
print(response)
# Text embedding
response = client.embeddings.create(
model="default",
input="How are you today",
)
print(response)
```
It supports streaming, vision, and most features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
......@@ -223,6 +230,8 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
### Supported Models
**Generative Models**
- Llama / Llama 2 / Llama 3 / Llama 3.1
- Mistral / Mixtral / Mistral NeMo
- Gemma / Gemma 2
......@@ -243,6 +252,12 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
- ChatGLM
- InternLM 2
**Embedding Models**
- e5-mistral
- gte-Qwen2
- `python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct --is-embedding`
Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/en/model_support.md).
#### Use Models From ModelScope
......
......@@ -94,7 +94,10 @@ class TokenizerManager:
trust_remote_code=server_args.trust_remote_code,
model_overide_args=model_overide_args,
)
self.is_generation = is_generation_model(self.hf_config.architectures)
self.is_generation = is_generation_model(
self.hf_config.architectures, self.server_args.is_embedding
)
if server_args.context_length is not None:
self.context_len = server_args.context_length
......
......@@ -94,6 +94,7 @@ class ModelTpServer:
context_length=server_args.context_length,
model_overide_args=model_overide_args,
)
self.model_runner = ModelRunner(
model_config=self.model_config,
mem_fraction_static=server_args.mem_fraction_static,
......
......@@ -204,7 +204,7 @@ class ModelRunner:
else None
)
self.is_generation = is_generation_model(
self.model_config.hf_config.architectures
self.model_config.hf_config.architectures, self.server_args.is_embedding
)
logger.info(
......@@ -522,9 +522,18 @@ class ModelRunner:
batch,
forward_mode=ForwardMode.EXTEND,
)
return self.model.forward(
batch.input_ids, input_metadata.positions, input_metadata
)
if self.is_generation:
return self.model.forward(
batch.input_ids, input_metadata.positions, input_metadata
)
else:
# Only embedding models have get_embedding parameter
return self.model.forward(
batch.input_ids,
input_metadata.positions,
input_metadata,
get_embedding=True,
)
@torch.inference_mode()
def forward_extend_multi_modal(self, batch: ScheduleBatch):
......
......@@ -29,7 +29,11 @@ class LlamaEmbeddingModel(nn.Module):
positions: torch.Tensor,
input_metadata: InputMetadata,
input_embeds: torch.Tensor = None,
get_embedding: bool = True,
) -> EmbeddingPoolerOutput:
assert (
get_embedding
), "LlamaEmbeddingModel / MistralModel is only used for embedding"
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
return self.pooler(hidden_states, input_metadata)
......
......@@ -38,6 +38,7 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.pooler import EmbeddingPoolerOutput, Pooler, PoolingType
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.model_executor.forward_batch_info import InputMetadata
......@@ -275,6 +276,7 @@ class Qwen2ForCausalLM(nn.Module):
self.model = Qwen2Model(config, quant_config=quant_config)
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
@torch.no_grad()
def forward(
......@@ -283,11 +285,15 @@ class Qwen2ForCausalLM(nn.Module):
positions: torch.Tensor,
input_metadata: InputMetadata,
input_embeds: torch.Tensor = None,
get_embedding: bool = False,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
return self.logits_processor(
input_ids, hidden_states, self.lm_head.weight, input_metadata
)
if not get_embedding:
return self.logits_processor(
input_ids, hidden_states, self.lm_head.weight, input_metadata
)
else:
return self.pooler(hidden_states, input_metadata)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
......
......@@ -333,11 +333,13 @@ def launch_server(
start_process = start_controller_process_single
else:
start_process = start_controller_process_multi
proc_controller = mp.Process(
target=start_process,
args=(server_args, port_args, pipe_controller_writer, model_overide_args),
)
proc_controller.start()
proc_detoken = mp.Process(
target=start_detokenizer_process,
args=(
......@@ -515,6 +517,7 @@ class Runtime:
self.pid = None
pipe_reader, pipe_writer = mp.Pipe(duplex=False)
proc = mp.Process(
target=launch_server,
args=(self.server_args, model_overide_args, pipe_writer),
......
......@@ -38,6 +38,7 @@ class ServerArgs:
quantization: Optional[str] = None
served_model_name: Optional[str] = None
chat_template: Optional[str] = None
is_embedding: bool = False
# Port
host: str = "127.0.0.1"
......@@ -200,6 +201,11 @@ class ServerArgs:
action="store_true",
help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
)
parser.add_argument(
"--is-embedding",
action="store_true",
help="Whether to use a CausalLM as an embedding model.",
)
parser.add_argument(
"--context-length",
type=int,
......@@ -458,6 +464,11 @@ class ServerArgs:
assert not (
self.dp_size > 1 and self.node_rank is not None
), "multi-node data parallel is not supported"
if "Alibaba-NLP/gte-Qwen2-1.5B-instruct" == self.model_path:
logger.info(
"Not sure why, the tokenizer will add an additional token at the end of the prompt when trust_remote_mode=True"
)
self.trust_remote_code = False
if "gemma-2" in self.model_path.lower():
logger.info("When using sliding window in gemma-2, turn on flashinfer.")
self.disable_flashinfer = False
......
......@@ -224,13 +224,18 @@ def is_multimodal_model(model):
raise ValueError("unrecognized type")
def is_generation_model(model_architectures):
def is_generation_model(model_architectures, is_embedding: bool = False):
# We have two ways to determine whether a model is a generative model.
# 1. Check the model architectue
# 2. check the `is_embedding` server args
if (
"LlamaEmbeddingModel" in model_architectures
or "MistralModel" in model_architectures
):
return False
return True
else:
return not is_embedding
def decode_video_base64(video_base64):
......
......@@ -14,7 +14,7 @@ limitations under the License.
"""
import json
import multiprocessing
import multiprocessing as mp
import os
from dataclasses import dataclass
from typing import List, Union
......@@ -63,37 +63,35 @@ class HFRunner:
self,
model_path,
torch_dtype,
is_generation_model,
is_generation,
):
self.in_queue = multiprocessing.Queue()
self.out_queue = multiprocessing.Queue()
self.is_generation = is_generation
self.model_proc = multiprocessing.Process(
self.in_queue = mp.Queue()
self.out_queue = mp.Queue()
self.model_proc = mp.Process(
target=self.start_model_process,
args=(
self.in_queue,
self.out_queue,
model_path,
torch_dtype,
is_generation_model,
),
)
self.model_proc.start()
def start_model_process(
self, in_queue, out_queue, model_path, torch_dtype, is_generation_model
):
def start_model_process(self, in_queue, out_queue, model_path, torch_dtype):
self.tokenizer = AutoTokenizer.from_pretrained(
model_path,
torch_dtype=torch_dtype,
)
self.is_generation_model = is_generation_model
if self.is_generation_model:
if self.is_generation:
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch_dtype,
trust_remote_code=False,
low_cpu_mem_usage=True,
).cuda()
else:
......@@ -107,7 +105,7 @@ class HFRunner:
while True:
prompts, max_new_tokens = in_queue.get()
if prompts is not None:
if self.is_generation_model:
if self.is_generation:
output_strs = []
prefill_logprobs = []
for p in prompts:
......@@ -171,17 +169,19 @@ class SRTRunner:
self,
model_path,
torch_dtype,
is_generation_model,
is_generation,
tp_size=1,
port=5157,
):
self.is_generation_model = is_generation_model
self.is_generation = is_generation
self.runtime = Runtime(
model_path=model_path,
tp_size=tp_size,
dtype=get_dtype_str(torch_dtype),
port=port,
mem_fraction_static=0.7,
trust_remote_code=False,
is_embedding=not self.is_generation,
)
def forward(
......@@ -189,7 +189,7 @@ class SRTRunner:
prompts: Union[List[str], List[torch.Tensor]] = DEFAULT_PROMPTS,
max_new_tokens=8,
):
if self.is_generation_model:
if self.is_generation:
# the return value contains logprobs from prefill
output_strs = []
top_input_logprobs = []
......
......@@ -20,7 +20,10 @@ import torch
from sglang.test.runners import DEFAULT_PROMPTS, HFRunner, SRTRunner
from sglang.test.test_utils import get_similarities
MODELS = [("intfloat/e5-mistral-7b-instruct", 1, 0.2)]
MODELS = [
("Alibaba-NLP/gte-Qwen2-1.5B-instruct", 1, 1e-5),
("intfloat/e5-mistral-7b-instruct", 1, 1e-5),
]
TORCH_DTYPES = [torch.float16]
......@@ -32,10 +35,10 @@ class TestEmbeddingModels(unittest.TestCase):
model_path,
tp_size,
torch_dtype,
long_context_tolerance,
prefill_tolerance,
) -> None:
with HFRunner(
model_path, torch_dtype=torch_dtype, is_generation_model=False
model_path, torch_dtype=torch_dtype, is_generation=False
) as hf_runner:
hf_outputs = hf_runner.forward(prompts)
......@@ -43,11 +46,9 @@ class TestEmbeddingModels(unittest.TestCase):
model_path,
tp_size=tp_size,
torch_dtype=torch_dtype,
is_generation_model=False,
is_generation=False,
) as srt_runner:
srt_outputs = srt_runner.forward(
prompts,
)
srt_outputs = srt_runner.forward(prompts)
for i in range(len(prompts)):
hf_logits = torch.Tensor(hf_outputs.embed_logits[i])
......@@ -57,18 +58,15 @@ class TestEmbeddingModels(unittest.TestCase):
print("similarity diff", abs(similarity - 1))
if len(prompts[i]) <= 1000:
tolerance = 1e-5
else:
tolerance = long_context_tolerance
assert torch.all(
abs(similarity - 1) < tolerance
), "embeddings are not all close"
assert torch.all(
abs(similarity - 1) < prefill_tolerance
), "embeddings are not all close"
def test_prefill_logits(self):
for model, tp_size, long_context_tolerance in MODELS:
for model, tp_size, prefill_tolerance in MODELS:
for torch_dtype in TORCH_DTYPES:
self.assert_close_prefill_logits(
DEFAULT_PROMPTS, model, tp_size, torch_dtype, long_context_tolerance
DEFAULT_PROMPTS, model, tp_size, torch_dtype, prefill_tolerance
)
......
......@@ -20,12 +20,46 @@ import torch
from sglang.test.runners import DEFAULT_PROMPTS, HFRunner, SRTRunner
MODELS = [
("meta-llama/Meta-Llama-3.1-8B-Instruct", 1, 1.1),
("google/gemma-2-2b", 1, 3),
("meta-llama/Meta-Llama-3.1-8B-Instruct", 1, 1.1, 3e-2, 1),
("google/gemma-2-2b", 1, 3, 3e-2, 1),
("Alibaba-NLP/gte-Qwen2-1.5B-instruct", 1, None, 6e-2, 1),
]
TORCH_DTYPES = [torch.float16]
def lcs(X, Y):
m = len(X)
n = len(Y)
L = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m + 1):
for j in range(n + 1):
if i == 0 or j == 0:
L[i][j] = 0
elif X[i - 1] == Y[j - 1]:
L[i][j] = L[i - 1][j - 1] + 1
else:
L[i][j] = max(L[i - 1][j], L[i][j - 1])
return L[m][n]
def calculate_rouge_l(output_strs_list1, output_strs_list2):
rouge_l_scores = []
for s1, s2 in zip(output_strs_list1, output_strs_list2):
lcs_len = lcs(s1, s2)
precision = lcs_len / len(s1) if len(s1) > 0 else 0
recall = lcs_len / len(s2) if len(s2) > 0 else 0
if precision + recall > 0:
fmeasure = (2 * precision * recall) / (precision + recall)
else:
fmeasure = 0.0
rouge_l_scores.append(fmeasure)
return rouge_l_scores
class TestGenerationModels(unittest.TestCase):
def assert_close_prefill_logits_and_output_strs(
......@@ -35,10 +69,14 @@ class TestGenerationModels(unittest.TestCase):
tp_size,
torch_dtype,
max_new_tokens,
prefill_tolerance,
rouge_threshold,
long_context_tolerance,
) -> None:
if model_path == "Alibaba-NLP/gte-Qwen2-1.5B-instruct":
prompts = prompts[:-1]
with HFRunner(
model_path, torch_dtype=torch_dtype, is_generation_model=True
model_path, torch_dtype=torch_dtype, is_generation=True
) as hf_runner:
hf_outputs = hf_runner.forward(prompts, max_new_tokens=max_new_tokens)
......@@ -46,7 +84,7 @@ class TestGenerationModels(unittest.TestCase):
model_path,
tp_size=tp_size,
torch_dtype=torch_dtype,
is_generation_model=True,
is_generation=True,
) as srt_runner:
srt_outputs = srt_runner.forward(prompts, max_new_tokens=max_new_tokens)
......@@ -56,17 +94,34 @@ class TestGenerationModels(unittest.TestCase):
print("max_diff", torch.max(abs(hf_logprobs - srt_logprobs)))
if hf_logprobs.shape[0] <= 100:
tolerance = 3e-2
assert torch.all(
abs(hf_logprobs - srt_logprobs) < tolerance
abs(hf_logprobs - srt_logprobs) < prefill_tolerance
), "prefill logprobs are not all close"
print(hf_outputs.output_strs)
print(srt_outputs.output_strs)
assert hf_outputs.output_strs == srt_outputs.output_strs
rouge_l_scores = calculate_rouge_l(
hf_outputs.output_strs, srt_outputs.output_strs
)
assert all(
score >= rouge_threshold for score in rouge_l_scores
), f"Not all ROUGE-L scores are greater than {rouge_threshold}"
def test_prefill_logits_and_output_strs(self):
for model, tp_size, long_context_tolerance in MODELS:
import multiprocessing as mp
try:
mp.set_start_method("spawn")
except RuntimeError:
pass
for (
model,
tp_size,
long_context_tolerance,
prefill_tolerance,
rouge_threshold,
) in MODELS:
for torch_dtype in TORCH_DTYPES:
max_new_tokens = 8
self.assert_close_prefill_logits_and_output_strs(
......@@ -75,6 +130,8 @@ class TestGenerationModels(unittest.TestCase):
tp_size,
torch_dtype,
max_new_tokens,
prefill_tolerance=prefill_tolerance,
rouge_threshold=rouge_threshold,
long_context_tolerance=long_context_tolerance,
)
......
......@@ -5,6 +5,9 @@ from sglang.test.test_utils import run_unittest_files
suites = {
"minimal": [
"models/test_embedding_models.py",
"models/test_generation_models.py",
"sampling/penaltylib",
"test_chunked_prefill.py",
"test_embedding_openai_server.py",
"test_eval_accuracy_mini.py",
......@@ -13,11 +16,8 @@ suites = {
"test_skip_tokenizer_init.py",
"test_torch_compile.py",
"test_triton_attn_backend.py",
"test_vision_openai_server.py",
"test_update_weights.py",
"models/test_generation_models.py",
"models/test_embedding_models.py",
"sampling/penaltylib",
"test_vision_openai_server.py",
],
"sampling/penaltylib": glob.glob(
"sampling/penaltylib/**/test_*.py", recursive=True
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment