Unverified Commit 30828e71 authored by HAI's avatar HAI Committed by GitHub
Browse files

AMD: set weights and scaling numbers properly for block FP8 (#2637)

parent e0e09fce
...@@ -272,6 +272,19 @@ class Fp8LinearMethod(LinearMethodBase): ...@@ -272,6 +272,19 @@ class Fp8LinearMethod(LinearMethodBase):
def process_weights_after_loading(self, layer: Module) -> None: def process_weights_after_loading(self, layer: Module) -> None:
# Block quant doesn't need to process weights after loading # Block quant doesn't need to process weights after loading
if self.block_quant: if self.block_quant:
# If ROCm, normalize the weights and scales to e4m3fnuz
if is_hip():
# activation_scheme: dynamic
weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
weight=layer.weight,
weight_scale=layer.weight_scale_inv,
input_scale=None,
)
layer.weight = torch.nn.Parameter(weight, require_grad=False)
layer.weight_scale_inv = torch.nn.Parameter(
weight_scale, require_grad=False
)
layer.input_scale = None
return return
layer.weight = torch.nn.Parameter(layer.weight.data, requires_grad=False) layer.weight = torch.nn.Parameter(layer.weight.data, requires_grad=False)
# If checkpoint not serialized fp8, quantize the weights. # If checkpoint not serialized fp8, quantize the weights.
...@@ -369,7 +382,7 @@ class Fp8LinearMethod(LinearMethodBase): ...@@ -369,7 +382,7 @@ class Fp8LinearMethod(LinearMethodBase):
weight=layer.weight, weight=layer.weight,
block_size=self.quant_config.weight_block_size, block_size=self.quant_config.weight_block_size,
weight_scale=layer.weight_scale_inv, weight_scale=layer.weight_scale_inv,
input_scale=layer.input_scale, input_scale=None,
bias=bias, bias=bias,
) )
...@@ -553,6 +566,30 @@ class Fp8MoEMethod: ...@@ -553,6 +566,30 @@ class Fp8MoEMethod:
# Block quant doesn't need to process weights after loading # Block quant doesn't need to process weights after loading
if self.block_quant: if self.block_quant:
# If ROCm, normalize the weights and scales to e4m3fnuz
if is_hip():
# activation_scheme: dynamic
w13_weight, w13_weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
weight=layer.w13_weight,
weight_scale=layer.w13_weight_scale_inv,
input_scale=None,
)
w2_weight, w2_weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
weight=layer.w2_weight,
weight_scale=layer.w2_weight_scale_inv,
input_scale=None,
)
# Reset the parameter
layer.w13_weight = torch.nn.Parameter(w13_weight, requires_grad=False)
layer.w13_weight_scale_inv = torch.nn.Parameter(
w13_weight_scale, requires_grad=False
)
layer.w13_input_scale = None
layer.w2_weight = torch.nn.Parameter(w2_weight, requires_grad=False)
layer.w2_weight_scale_inv = torch.nn.Parameter(
w2_weight_scale, requires_grad=False
)
layer.w2_input_scale = None
return return
# If checkpoint is fp16 or bfloat16, quantize in place. # If checkpoint is fp16 or bfloat16, quantize in place.
if not self.quant_config.is_checkpoint_fp8_serialized: if not self.quant_config.is_checkpoint_fp8_serialized:
......
...@@ -22,7 +22,10 @@ import torch ...@@ -22,7 +22,10 @@ import torch
import triton import triton
import triton.language as tl import triton.language as tl
from sglang.srt.utils import get_device_name from sglang.srt.utils import get_device_name, is_hip
is_hip_ = is_hip()
fp8_type_ = torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
...@@ -73,7 +76,7 @@ def per_token_group_quant_fp8( ...@@ -73,7 +76,7 @@ def per_token_group_quant_fp8(
x: torch.Tensor, x: torch.Tensor,
group_size: int, group_size: int,
eps: float = 1e-10, eps: float = 1e-10,
dtype: torch.dtype = torch.float8_e4m3fn, dtype: torch.dtype = fp8_type_,
) -> Tuple[torch.Tensor, torch.Tensor]: ) -> Tuple[torch.Tensor, torch.Tensor]:
"""Function to perform per-token-group quantization on an input tensor `x`. """Function to perform per-token-group quantization on an input tensor `x`.
...@@ -95,9 +98,13 @@ def per_token_group_quant_fp8( ...@@ -95,9 +98,13 @@ def per_token_group_quant_fp8(
assert x.is_contiguous(), "`x` is not contiguous" assert x.is_contiguous(), "`x` is not contiguous"
finfo = torch.finfo(dtype) finfo = torch.finfo(dtype)
fp8_min = finfo.min
fp8_max = finfo.max fp8_max = finfo.max
if is_hip_:
fp8_max = 224.0
fp8_min = -fp8_max
x_q = torch.empty_like(x, device=x.device, dtype=dtype) x_q = torch.empty_like(x, device=x.device, dtype=dtype)
M = x.numel() // group_size M = x.numel() // group_size
N = group_size N = group_size
......
...@@ -7,6 +7,9 @@ from sglang.srt.layers.quantization.fp8_kernel import ( ...@@ -7,6 +7,9 @@ from sglang.srt.layers.quantization.fp8_kernel import (
per_token_group_quant_fp8, per_token_group_quant_fp8,
w8a8_block_fp8_matmul, w8a8_block_fp8_matmul,
) )
from sglang.srt.utils import is_hip
is_hip_ = is_hip()
def normalize_e4m3fn_to_e4m3fnuz( def normalize_e4m3fn_to_e4m3fnuz(
...@@ -63,8 +66,11 @@ def input_to_float8( ...@@ -63,8 +66,11 @@ def input_to_float8(
finfo = torch.finfo(dtype) finfo = torch.finfo(dtype)
min_val, max_val = x.aminmax() min_val, max_val = x.aminmax()
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12) amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
scale = finfo.max / amax fp8_max = finfo.max
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max) if is_hip_:
fp8_max = 224.0
scale = fp8_max / amax
x_scl_sat = (x * scale).clamp(min=-fp8_max, max=fp8_max)
return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal() return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment