Unverified Commit 2fc824b8 authored by Zhiqiang Xie's avatar Zhiqiang Xie Committed by GitHub
Browse files

Kernels for efficient KV cache IO (#7313)

parent 253454de
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License.
"""
import concurrent.futures
import logging
import math
import threading
......@@ -169,12 +168,23 @@ class HiCacheController:
page_size: int,
load_cache_event: threading.Event = None,
write_policy: str = "write_through_selective",
io_backend: str = "",
):
self.mem_pool_device_allocator = token_to_kv_pool_allocator
self.mem_pool_device = token_to_kv_pool_allocator.get_kvcache()
self.mem_pool_host = mem_pool_host
self.write_policy = write_policy
self.page_size = page_size
# using kernel for small page KV cache transfer and DMA for large pages
if not io_backend:
IO_BACKEND_PAGE_SIZE_THRESHOLD = 64
self.io_backend = (
"direct"
if self.page_size >= IO_BACKEND_PAGE_SIZE_THRESHOLD
else "kernel"
)
else:
self.io_backend = io_backend
self.load_cache_event = load_cache_event
self.layer_done_counter = LayerDoneCounter(self.mem_pool_device.layer_num)
......@@ -203,12 +213,7 @@ class HiCacheController:
self.load_stream = torch.cuda.Stream()
self.write_thread = threading.Thread(
target=(
self.write_thread_func_buffer
if self.page_size == 1
else self.write_thread_func_direct
),
daemon=True,
target=self.write_thread_func_direct, daemon=True
)
self.load_thread = threading.Thread(
target=self.load_thread_func_layer_by_layer, daemon=True
......@@ -229,12 +234,7 @@ class HiCacheController:
self.ack_load_queue.queue.clear()
self.write_thread = threading.Thread(
target=(
self.write_thread_func_buffer
if self.page_size == 1
else self.write_thread_func_direct
),
daemon=True,
target=self.write_thread_func_direct, daemon=True
)
self.load_thread = threading.Thread(
target=self.load_thread_func_layer_by_layer, daemon=True
......@@ -281,6 +281,15 @@ class HiCacheController:
)
return device_indices
def move_indices(self, host_indices, device_indices):
# move indices to GPU if using kernels, to host if using direct indexing
if self.io_backend == "kernel":
return host_indices.to(self.mem_pool_device.device), device_indices
elif self.io_backend == "direct":
return host_indices, device_indices.cpu()
else:
raise ValueError(f"Unsupported io backend")
def write_thread_func_direct(self):
"""
Directly write through KV caches to host memory without buffering.
......@@ -289,10 +298,14 @@ class HiCacheController:
while not self.stop_event.is_set():
try:
operation = self.write_queue.get(block=True, timeout=1)
self.mem_pool_host.write_page_all_layers(
operation.host_indices,
operation.device_indices,
self.mem_pool_device,
host_indices, device_indices = self.move_indices(
operation.host_indices, operation.device_indices
)
self.mem_pool_device.backup_to_host_all_layer(
self.mem_pool_host,
host_indices,
device_indices,
self.io_backend,
)
self.write_stream.synchronize()
self.mem_pool_host.complete_io(operation.host_indices)
......@@ -304,27 +317,6 @@ class HiCacheController:
except Exception as e:
logger.error(e)
def load_thread_func_direct(self):
"""
Directly load KV caches from host memory to device memory without buffering.
"""
torch.cuda.set_stream(self.load_stream)
while not self.stop_event.is_set():
try:
operation = self.load_queue.get(block=True, timeout=1)
operation.data = self.mem_pool_host.get_flat_data(
operation.host_indices
)
self.mem_pool_device.transfer(operation.device_indices, operation.data)
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_load_queue.put(node_id)
except Empty:
continue
except Exception as e:
logger.error(e)
def load_thread_func_layer_by_layer(self):
"""
Load KV caches from host memory to device memory layer by layer.
......@@ -349,22 +341,18 @@ class HiCacheController:
# start layer-wise KV cache transfer from CPU to GPU
self.layer_done_counter.reset()
host_indices, device_indices = self.move_indices(
batch_operation.host_indices, batch_operation.device_indices
)
for i in range(self.mem_pool_host.layer_num):
if self.page_size == 1:
flat_data = self.mem_pool_host.get_flat_data_by_layer(
batch_operation.host_indices, i
)
self.mem_pool_device.transfer_per_layer(
batch_operation.device_indices, flat_data, i
)
else:
self.mem_pool_host.load_page_per_layer(
batch_operation.host_indices,
batch_operation.device_indices,
self.mem_pool_device,
i,
)
self.load_stream.synchronize()
self.mem_pool_device.load_from_host_per_layer(
self.mem_pool_host,
host_indices,
device_indices,
i,
self.io_backend,
)
self.load_stream.synchronize()
self.layer_done_counter.increment()
self.mem_pool_host.complete_io(batch_operation.host_indices)
......@@ -372,148 +360,6 @@ class HiCacheController:
if node_id != 0:
self.ack_load_queue.put(node_id)
def write_aux_func(self, no_wait=False):
"""
Auxiliary function to prepare the buffer for write operations.
"""
torch.cuda.set_stream(self.write_stream)
def _to_op(op_):
assert op_.device_indices.is_cuda, "Device indices should be on GPU"
op_.data = self.mem_pool_device.get_flat_data(op_.device_indices).to(
self.mem_pool_host.device
)
self.write_buffer.put(op_)
return op_
buffer = None
while not self.stop_event.is_set():
try:
operation = self.write_queue.get(block=True, timeout=1)
factor = (
len(operation.device_indices) // self.write_buffer.max_buffer_size
)
if factor >= 1:
if buffer is not None:
_to_op(buffer)
buffer = None
if factor < 2:
_to_op(operation)
else:
split_ops = operation.split(factor)
for op_ in split_ops:
_to_op(op_)
continue
if buffer is None:
buffer = operation
else:
buffer.merge(operation)
if (
no_wait
or len(buffer.host_indices) >= self.write_buffer.max_buffer_size
or self.write_queue.empty()
or self.write_buffer.empty()
):
_to_op(buffer)
buffer = None
except Empty:
continue
except Exception as e:
logger.error(e)
def load_aux_func(self):
"""
Auxiliary function to prepare the buffer for load operations.
"""
def _pin_op(op_, put=True):
op_.data = (
self.mem_pool_host.get_flat_data(op_.host_indices)
.contiguous()
.pin_memory()
)
if put:
self.load_buffer.put(op_)
return op_
buffer = None
while not self.stop_event.is_set():
try:
operation = self.load_queue.get(block=True, timeout=1)
factor = len(operation.host_indices) // self.load_buffer.max_buffer_size
if factor >= 1:
if buffer is not None:
_pin_op(buffer)
buffer = None
if factor < 2:
_pin_op(operation)
else:
split_ops = operation.split(factor)
split_args = [(op_, True) for op_ in split_ops[:-1]]
split_args.append((split_ops[-1], False))
# Spawn threads to pin each op concurrently
with concurrent.futures.ThreadPoolExecutor() as executor:
pinned_ops = list(
executor.map(
lambda x: _pin_op(x[0], put=x[1]), split_args
)
)
# preserve the order of last op to ensure correct ack
self.load_buffer.put(pinned_ops[-1])
continue
if buffer is None:
buffer = operation
else:
buffer.merge(operation)
if (
len(buffer.host_indices) >= self.load_buffer.max_buffer_size
or self.load_queue.empty()
or self.load_buffer.empty()
):
_pin_op(buffer)
buffer = None
except Empty:
continue
except Exception as e:
logger.error(e)
# todo (zhiqiang): double buffering to be deprecated
def write_thread_func_buffer(self):
aux_thread = threading.Thread(target=self.write_aux_func, daemon=True)
aux_thread.start()
while not self.stop_event.is_set():
operation = self.write_buffer.get()
if operation is None:
continue
self.mem_pool_host.assign_flat_data(operation.host_indices, operation.data)
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_write_queue.put(node_id)
aux_thread.join()
def load_thread_func_buffer(self):
torch.cuda.set_stream(self.load_stream)
aux_thread = threading.Thread(target=self.load_aux_func, daemon=True)
aux_thread.start()
while not self.stop_event.is_set():
operation = self.load_buffer.get()
if operation is None:
continue
self.mem_pool_device.transfer(operation.device_indices, operation.data)
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_load_queue.put(node_id)
aux_thread.join()
def evict_device(
self, device_indices: torch.Tensor, host_indices: torch.Tensor
) -> int:
......
......@@ -591,6 +591,12 @@ class Scheduler(
hicache_ratio=server_args.hicache_ratio,
hicache_size=server_args.hicache_size,
hicache_write_policy=server_args.hicache_write_policy,
hicache_io_backend=(
"direct"
if server_args.attention_backend
== "fa3" # hot fix for incompatibility
else server_args.hicache_io_backend
),
)
self.tp_worker.register_hicache_layer_transfer_counter(
self.tree_cache.cache_controller.layer_done_counter
......
......@@ -34,6 +34,7 @@ class HiRadixCache(RadixCache):
hicache_ratio: float,
hicache_size: int,
hicache_write_policy: str,
hicache_io_backend: str,
):
self.kv_cache = token_to_kv_pool_allocator.get_kvcache()
if isinstance(self.kv_cache, MHATokenToKVPool):
......@@ -56,6 +57,7 @@ class HiRadixCache(RadixCache):
page_size,
load_cache_event=self.load_cache_event,
write_policy=hicache_write_policy,
io_backend=hicache_io_backend,
)
# record the nodes with ongoing write through
......
......@@ -34,10 +34,11 @@ import torch
import torch.distributed as dist
import triton
import triton.language as tl
from sgl_kernel.kvcacheio import transfer_kv_per_layer, transfer_kv_per_layer_mla
from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.utils import debug_timing, get_bool_env_var, is_cuda, next_power_of_2
from sglang.srt.utils import get_bool_env_var, is_cuda, next_power_of_2
logger = logging.getLogger(__name__)
......@@ -150,13 +151,16 @@ class KVCache(abc.ABC):
) -> None:
raise NotImplementedError()
def get_flat_data(self, indices):
raise NotImplementedError()
def transfer(self, indices, flat_data):
@abc.abstractmethod
def load_from_host_per_layer(
self, host_pool, host_indices, device_indices, layer_id, io_backend
):
raise NotImplementedError()
def transfer_per_layer(self, indices, flat_data, layer_id):
@abc.abstractmethod
def backup_to_host_all_layer(
self, host_pool, host_indices, device_indices, io_backend
):
raise NotImplementedError()
def register_layer_transfer_counter(self, layer_transfer_counter):
......@@ -247,7 +251,7 @@ class MHATokenToKVPool(KVCache):
)
for _ in range(self.layer_num)
]
self.token_stride = self.head_num * self.head_dim
self.data_ptrs = torch.tensor(
[x.data_ptr() for x in self.k_buffer + self.v_buffer],
dtype=torch.uint64,
......@@ -281,24 +285,24 @@ class MHATokenToKVPool(KVCache):
# layer_num x [seq_len, head_num, head_dim]
# layer_num x [page_num, page_size, head_num, head_dim]
kv_data_ptrs = [
self.get_key_buffer(i).data_ptr()
self._get_key_buffer(i).data_ptr()
for i in range(self.start_layer, self.start_layer + self.layer_num)
] + [
self.get_value_buffer(i).data_ptr()
self._get_value_buffer(i).data_ptr()
for i in range(self.start_layer, self.start_layer + self.layer_num)
]
kv_data_lens = [
self.get_key_buffer(i).nbytes
self._get_key_buffer(i).nbytes
for i in range(self.start_layer, self.start_layer + self.layer_num)
] + [
self.get_value_buffer(i).nbytes
self._get_value_buffer(i).nbytes
for i in range(self.start_layer, self.start_layer + self.layer_num)
]
kv_item_lens = [
self.get_key_buffer(i)[0].nbytes * self.page_size
self._get_key_buffer(i)[0].nbytes * self.page_size
for i in range(self.start_layer, self.start_layer + self.layer_num)
] + [
self.get_value_buffer(i)[0].nbytes * self.page_size
self._get_value_buffer(i)[0].nbytes * self.page_size
for i in range(self.start_layer, self.start_layer + self.layer_num)
]
return kv_data_ptrs, kv_data_lens, kv_item_lens
......@@ -341,49 +345,73 @@ class MHATokenToKVPool(KVCache):
self.v_buffer[layer_id][chunk_indices] = v_chunk
torch.cuda.synchronize()
# Todo: different memory layout
def get_flat_data(self, indices):
# prepare a large chunk of contiguous data for efficient transfer
flatten = torch.stack(
[
torch.stack([self.k_buffer[i][indices] for i in range(self.layer_num)]),
torch.stack([self.v_buffer[i][indices] for i in range(self.layer_num)]),
]
def load_from_host_per_layer(
self,
host_pool,
host_indices,
device_indices,
layer_id,
io_backend,
):
transfer_kv_per_layer(
src_k=host_pool.k_buffer[layer_id],
dst_k=self.k_buffer[layer_id],
src_v=host_pool.v_buffer[layer_id],
dst_v=self.v_buffer[layer_id],
src_indices=host_indices,
dst_indices=device_indices,
io_backend=io_backend,
page_size=self.page_size,
item_size=self.token_stride,
)
return flatten
@debug_timing
def transfer(self, indices, flat_data):
# transfer prepared data from host to device
flat_data = flat_data.to(device=self.device, non_blocking=False)
k_data, v_data = flat_data[0], flat_data[1]
for i in range(self.layer_num):
self.k_buffer[i][indices] = k_data[i]
self.v_buffer[i][indices] = v_data[i]
def transfer_per_layer(self, indices, flat_data, layer_id):
# transfer prepared data from host to device
flat_data = flat_data.to(device=self.device, non_blocking=False)
k_data, v_data = flat_data[0], flat_data[1]
self.k_buffer[layer_id - self.start_layer][indices] = k_data
self.v_buffer[layer_id - self.start_layer][indices] = v_data
def get_key_buffer(self, layer_id: int):
if self.layer_transfer_counter is not None:
self.layer_transfer_counter.wait_until(layer_id - self.start_layer)
def backup_to_host_all_layer(
self, host_pool, host_indices, device_indices, io_backend
):
# todo: specialized all layer kernels for the layer-non-contiguous memory pool
for layer_id in range(self.start_layer, self.start_layer + self.layer_num):
if layer_id - self.start_layer >= len(host_pool.k_buffer):
raise ValueError(
f"Layer ID {layer_id} exceeds the number of layers in host pool."
)
transfer_kv_per_layer(
src_k=self.k_buffer[layer_id],
dst_k=host_pool.k_buffer[layer_id],
src_v=self.v_buffer[layer_id],
dst_v=host_pool.v_buffer[layer_id],
src_indices=device_indices,
dst_indices=host_indices,
io_backend=io_backend,
page_size=self.page_size,
item_size=self.token_stride,
)
def _get_key_buffer(self, layer_id: int):
# for internal use of referencing
if self.store_dtype != self.dtype:
return self.k_buffer[layer_id - self.start_layer].view(self.dtype)
return self.k_buffer[layer_id - self.start_layer]
def get_value_buffer(self, layer_id: int):
def get_key_buffer(self, layer_id: int):
# note: get_key_buffer is hooked with synchronization for layer-wise KV cache loading
# it is supposed to be used only by attention backend not for information purpose
# same applies to get_value_buffer and get_kv_buffer
if self.layer_transfer_counter is not None:
self.layer_transfer_counter.wait_until(layer_id - self.start_layer)
return self._get_key_buffer(layer_id)
def _get_value_buffer(self, layer_id: int):
# for internal use of referencing
if self.store_dtype != self.dtype:
return self.v_buffer[layer_id - self.start_layer].view(self.dtype)
return self.v_buffer[layer_id - self.start_layer]
def get_value_buffer(self, layer_id: int):
if self.layer_transfer_counter is not None:
self.layer_transfer_counter.wait_until(layer_id - self.start_layer)
return self._get_value_buffer(layer_id)
def get_kv_buffer(self, layer_id: int):
return self.get_key_buffer(layer_id), self.get_value_buffer(layer_id)
......@@ -761,6 +789,7 @@ class MLATokenToKVPool(KVCache):
for _ in range(layer_num)
]
self.token_stride = kv_lora_rank + qk_rope_head_dim
self.layer_transfer_counter = None
kv_size = self.get_kv_size_bytes()
......@@ -846,21 +875,37 @@ class MLATokenToKVPool(KVCache):
self.kv_buffer[layer_id], loc, cache_k_nope, cache_k_rope
)
def get_flat_data(self, indices):
# prepare a large chunk of contiguous data for efficient transfer
return torch.stack([self.kv_buffer[i][indices] for i in range(self.layer_num)])
@debug_timing
def transfer(self, indices, flat_data):
# transfer prepared data from host to device
flat_data = flat_data.to(device=self.device, non_blocking=False)
for i in range(self.layer_num):
self.kv_buffer[i][indices] = flat_data[i]
def load_from_host_per_layer(
self, host_pool, host_indices, device_indices, layer_id, io_backend
):
transfer_kv_per_layer_mla(
src=host_pool.kv_buffer[layer_id],
dst=self.kv_buffer[layer_id],
src_indices=host_indices,
dst_indices=device_indices,
io_backend=io_backend,
page_size=self.page_size,
item_size=self.token_stride,
)
def transfer_per_layer(self, indices, flat_data, layer_id):
# transfer prepared data from host to device
flat_data = flat_data.to(device=self.device, non_blocking=False)
self.kv_buffer[layer_id - self.start_layer][indices] = flat_data
def backup_to_host_all_layer(
self, host_pool, host_indices, device_indices, io_backend
):
# todo: specialized all layer kernels for the layer-non-contiguous memory pool
for layer_id in range(self.start_layer, self.start_layer + self.layer_num):
if layer_id - self.start_layer >= len(host_pool.kv_buffer):
raise ValueError(
f"Layer ID {layer_id} exceeds the number of layers in host pool."
)
transfer_kv_per_layer_mla(
src=self.kv_buffer[layer_id],
dst=host_pool.kv_buffer[layer_id],
src_indices=device_indices,
dst_indices=host_indices,
io_backend=io_backend,
page_size=self.page_size,
item_size=self.token_stride,
)
def get_cpu_copy(self, indices):
torch.cuda.synchronize()
......@@ -1046,14 +1091,19 @@ class DoubleSparseTokenToKVPool(KVCache):
self.v_buffer[layer_id - self.start_layer][loc] = cache_v
self.label_buffer[layer_id - self.start_layer][loc] = cache_label
def get_flat_data(self, indices):
pass
def transfer(self, indices, flat_data):
pass
def load_from_host_per_layer(
self, host_pool, host_indices, device_indices, layer_id, io_backend
):
raise NotImplementedError(
"HiCache not supported for DoubleSparseTokenToKVPool."
)
def transfer_per_layer(self, indices, flat_data, layer_id):
pass
def backup_to_host_all_layer(
self, host_pool, host_indices, device_indices, io_backend
):
raise NotImplementedError(
"HiCache not supported for DoubleSparseTokenToKVPool."
)
@triton.jit
......
......@@ -8,7 +8,6 @@ import psutil
import torch
from sglang.srt.mem_cache.memory_pool import KVCache, MHATokenToKVPool, MLATokenToKVPool
from sglang.srt.utils import debug_timing
logger = logging.getLogger(__name__)
......@@ -99,22 +98,6 @@ class HostKVCache(abc.ABC):
def init_kv_buffer(self):
raise NotImplementedError()
@abc.abstractmethod
def transfer(self, indices, flat_data):
raise NotImplementedError()
@abc.abstractmethod
def get_flat_data(self, indices):
raise NotImplementedError()
@abc.abstractmethod
def get_flat_data_by_layer(self, indices, layer_id):
raise NotImplementedError()
@abc.abstractmethod
def assign_flat_data(self, indices, flat_data):
raise NotImplementedError()
@synchronized()
def clear(self):
# Initialize memory states and tracking structures.
......@@ -243,58 +226,13 @@ class MHATokenToKVPoolHost(HostKVCache):
pin_memory=self.pin_memory,
)
@debug_timing
def transfer(self, indices, flat_data):
# backup prepared data from device to host
self.kv_buffer[:, :, indices] = flat_data.to(
device=self.device, non_blocking=False
)
@property
def k_buffer(self):
return self.kv_buffer[0]
def get_flat_data(self, indices):
return self.kv_buffer[:, :, indices]
def get_flat_data_by_layer(self, indices, layer_id):
return self.kv_buffer[:, layer_id - self.start_layer, indices]
def assign_flat_data(self, indices, flat_data):
self.kv_buffer[:, :, indices] = flat_data
def write_page_all_layers(self, host_indices, device_indices, device_pool):
device_indices_cpu = device_indices[:: self.page_size].cpu()
for i in range(len(device_indices_cpu)):
h_index = host_indices[i * self.page_size]
d_index = device_indices_cpu[i]
for j in range(self.layer_num):
self.kv_buffer[0, j, h_index : h_index + self.page_size].copy_(
device_pool.k_buffer[j][d_index : d_index + self.page_size],
non_blocking=True,
)
self.kv_buffer[1, j, h_index : h_index + self.page_size].copy_(
device_pool.v_buffer[j][d_index : d_index + self.page_size],
non_blocking=True,
)
def load_page_per_layer(self, host_indices, device_indices, device_pool, layer_id):
device_indices_cpu = device_indices[:: self.page_size].cpu()
for i in range(len(device_indices_cpu)):
h_index = host_indices[i * self.page_size]
d_index = device_indices_cpu[i]
device_pool.k_buffer[layer_id - self.start_layer][
d_index : d_index + self.page_size
].copy_(
self.kv_buffer[
0, layer_id - self.start_layer, h_index : h_index + self.page_size
],
non_blocking=True,
)
device_pool.v_buffer[layer_id - self.start_layer][
d_index : d_index + self.page_size
].copy_(
self.kv_buffer[
1, layer_id - self.start_layer, h_index : h_index + self.page_size
],
non_blocking=True,
)
@property
def v_buffer(self):
return self.kv_buffer[1]
class MLATokenToKVPoolHost(HostKVCache):
......@@ -337,44 +275,3 @@ class MLATokenToKVPoolHost(HostKVCache):
device=self.device,
pin_memory=self.pin_memory,
)
@debug_timing
def transfer(self, indices, flat_data):
# backup prepared data from device to host
self.kv_buffer[:, indices] = flat_data.to(
device=self.device, non_blocking=False
)
def get_flat_data(self, indices):
return self.kv_buffer[:, indices]
def get_flat_data_by_layer(self, indices, layer_id):
return self.kv_buffer[layer_id - self.start_layer, indices]
def assign_flat_data(self, indices, flat_data):
self.kv_buffer[:, indices] = flat_data
def write_page_all_layers(self, host_indices, device_indices, device_pool):
device_indices_cpu = device_indices[:: self.page_size].cpu()
for i in range(len(device_indices_cpu)):
h_index = host_indices[i * self.page_size]
d_index = device_indices_cpu[i]
for j in range(self.layer_num):
self.kv_buffer[j, h_index : h_index + self.page_size].copy_(
device_pool.kv_buffer[j][d_index : d_index + self.page_size],
non_blocking=True,
)
def load_page_per_layer(self, host_indices, device_indices, device_pool, layer_id):
device_indices_cpu = device_indices[:: self.page_size].cpu()
for i in range(len(device_indices_cpu)):
h_index = host_indices[i * self.page_size]
d_index = device_indices_cpu[i]
device_pool.kv_buffer[layer_id - self.start_layer][
d_index : d_index + self.page_size
].copy_(
self.kv_buffer[
layer_id - self.start_layer, h_index : h_index + self.page_size
],
non_blocking=True,
)
......@@ -196,11 +196,13 @@ class RadixCache(BasePrefixCache):
if self.page_size != 1:
page_aligned_len = len(kv_indices) // self.page_size * self.page_size
page_aligned_kv_indices = kv_indices[:page_aligned_len].clone()
page_aligned_kv_indices = kv_indices[:page_aligned_len].to(
dtype=torch.int64, copy=True
)
self.token_to_kv_pool_allocator.free(kv_indices[page_aligned_len:])
else:
page_aligned_len = len(kv_indices)
page_aligned_kv_indices = kv_indices.clone()
page_aligned_kv_indices = kv_indices.to(dtype=torch.int64, copy=True)
# Radix Cache takes one ref in memory pool
new_prefix_len = self.insert(
......@@ -226,10 +228,12 @@ class RadixCache(BasePrefixCache):
if self.page_size != 1:
page_aligned_len = len(kv_indices) // self.page_size * self.page_size
page_aligned_kv_indices = kv_indices[:page_aligned_len].clone()
page_aligned_kv_indices = kv_indices[:page_aligned_len].to(
dtype=torch.int64, copy=True
)
else:
page_aligned_len = len(kv_indices)
page_aligned_kv_indices = kv_indices.clone()
page_aligned_kv_indices = kv_indices.to(dtype=torch.int64, copy=True)
page_aligned_token_ids = token_ids[:page_aligned_len]
# Radix Cache takes one ref in memory pool
......
......@@ -217,6 +217,7 @@ class ServerArgs:
hicache_ratio: float = 2.0
hicache_size: int = 0
hicache_write_policy: str = "write_through_selective"
hicache_io_backend: str = ""
flashinfer_mla_disable_ragged: bool = False
disable_shared_experts_fusion: bool = False
disable_chunked_prefix_cache: bool = False
......@@ -1530,6 +1531,13 @@ class ServerArgs:
default=ServerArgs.hicache_write_policy,
help="The write policy of hierarchical cache.",
)
parser.add_argument(
"--hicache-io-backend",
type=str,
choices=["direct", "kernel"],
default=ServerArgs.hicache_io_backend,
help="The IO backend for KV cache transfer between CPU and GPU",
)
parser.add_argument(
"--flashinfer-mla-disable-ragged",
action="store_true",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment