Unverified Commit 2d96da81 authored by Ying Sheng's avatar Ying Sheng Committed by GitHub
Browse files

refactor model loader [unreachable code]: initial refactor (#655)

parent c126a6cc
This diff is collapsed.
# temporarily adapted from vLLM
# FIXME: in progress of refactoring the model loader
from typing import Dict, Type
from vllm.model_executor.layers.quantization.aqlm import AQLMConfig
from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
from vllm.model_executor.layers.quantization.bitsandbytes import BitsAndBytesConfig
from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors import ( # noqa: E501
CompressedTensorsConfig,
)
from vllm.model_executor.layers.quantization.deepspeedfp import DeepSpeedFPConfig
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
from vllm.model_executor.layers.quantization.gptq_marlin import GPTQMarlinConfig
from vllm.model_executor.layers.quantization.gptq_marlin_24 import GPTQMarlin24Config
from vllm.model_executor.layers.quantization.marlin import MarlinConfig
from vllm.model_executor.layers.quantization.squeezellm import SqueezeLLMConfig
from sglang.srt.layers.quantization.fp8 import Fp8Config
QUANTIZATION_METHODS: Dict[str, Type[QuantizationConfig]] = {
"aqlm": AQLMConfig,
"awq": AWQConfig,
"deepspeedfp": DeepSpeedFPConfig,
"fp8": Fp8Config,
# The order of gptq methods is important for config.py iteration over
# override_quantization_method(..)
"marlin": MarlinConfig,
"gptq_marlin_24": GPTQMarlin24Config,
"gptq_marlin": GPTQMarlinConfig,
"gptq": GPTQConfig,
"squeezellm": SqueezeLLMConfig,
"compressed-tensors": CompressedTensorsConfig,
"bitsandbytes": BitsAndBytesConfig,
}
def get_quantization_config(quantization: str) -> Type[QuantizationConfig]:
if quantization not in QUANTIZATION_METHODS:
raise ValueError(f"Invalid quantization method: {quantization}")
return QUANTIZATION_METHODS[quantization]
__all__ = [
"QuantizationConfig",
"get_quantization_config",
"QUANTIZATION_METHODS",
]
This diff is collapsed.
# temporarily adapted from https://github.com/vllm-project/vllm/blob/10383887e03412196a2689b9398290719c4797bf/vllm/model_executor/model_loader/loader.py
# FIXME: in progress of refactoring the model loader
import glob
import os
import re
from typing import Any, Dict, Generator, List, Optional, Tuple, Type
import torch
from torch import nn
from tqdm import tqdm
from vllm.config import (
CacheConfig,
DeviceConfig,
LoadConfig,
LoadFormat,
LoRAConfig,
ModelConfig,
MultiModalConfig,
ParallelConfig,
SchedulerConfig,
)
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
from vllm.model_executor.model_loader.utils import (
get_model_architecture,
set_default_torch_dtype,
)
from vllm.platforms import current_platform
from sglang.srt.model_loader.utils import (
download_safetensors_index_file_from_hf,
download_weights_from_hf,
filter_duplicate_safetensors_files,
get_quant_config,
safetensors_weights_iterator,
)
def _get_quantization_config(
model_config: ModelConfig, load_config: LoadConfig
) -> Optional[QuantizationConfig]:
"""Get the quantization config."""
if model_config.quantization is not None:
quant_config = get_quant_config(model_config, load_config)
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
if capability < quant_config.get_min_capability():
raise ValueError(
f"The quantization method {model_config.quantization} is not "
"supported for the current GPU. "
f"Minimum capability: {quant_config.get_min_capability()}. "
f"Current capability: {capability}."
)
supported_dtypes = quant_config.get_supported_act_dtypes()
if model_config.dtype not in supported_dtypes:
raise ValueError(
f"{model_config.dtype} is not supported for quantization "
f"method {model_config.quantization}. Supported dtypes: "
f"{supported_dtypes}"
)
return quant_config
return None
def _get_model_initialization_kwargs(
model_class: Type[nn.Module],
lora_config: Optional[LoRAConfig],
multimodal_config: Optional[MultiModalConfig],
) -> Dict[str, Any]:
"""Get extra kwargs for model initialization."""
extra_kwargs: Dict[str, Any] = {}
assert lora_config is None
assert multimodal_config is None
return extra_kwargs
def _initialize_model(
model_config: ModelConfig,
load_config: LoadConfig,
lora_config: Optional[LoRAConfig],
multimodal_config: Optional[MultiModalConfig],
cache_config: CacheConfig,
) -> nn.Module:
"""Initialize a model with the given configurations."""
model_class = get_model_architecture(model_config)[0]
quant_config = _get_quantization_config(model_config, load_config)
return model_class(
config=model_config.hf_config,
cache_config=cache_config,
quant_config=quant_config,
**_get_model_initialization_kwargs(model_class, lora_config, multimodal_config),
)
class ModelLoader:
"""Model loader that can load different file types from disk."""
def __init__(self, load_config: LoadConfig):
self.load_config = load_config
def _prepare_weights(
self, model_name_or_path: str, revision: Optional[str], fall_back_to_pt: bool
) -> Tuple[str, List[str], bool]:
"""Prepare weights for the model.
If the model is not local, it will be downloaded."""
is_local = os.path.isdir(model_name_or_path)
load_format = self.load_config.load_format
use_safetensors = False
# Some quantized models use .pt files for storing the weights.
if load_format == LoadFormat.AUTO:
allow_patterns = ["*.safetensors", "*.bin"]
elif load_format == LoadFormat.SAFETENSORS:
use_safetensors = True
allow_patterns = ["*.safetensors"]
elif load_format == LoadFormat.PT:
allow_patterns = ["*.pt"]
elif load_format == LoadFormat.NPCACHE:
allow_patterns = ["*.bin"]
else:
raise ValueError(f"Unknown load_format: {load_format}")
if fall_back_to_pt:
allow_patterns += ["*.pt"]
if not is_local:
hf_folder = download_weights_from_hf(
model_name_or_path,
self.load_config.download_dir,
allow_patterns,
revision,
)
else:
hf_folder = model_name_or_path
hf_weights_files: List[str] = []
for pattern in allow_patterns:
hf_weights_files += glob.glob(os.path.join(hf_folder, pattern))
if len(hf_weights_files) > 0:
if pattern == "*.safetensors":
use_safetensors = True
break
if use_safetensors:
# For models like Mistral-7B-Instruct-v0.3
# there are both sharded safetensors files and a consolidated
# safetensors file. Using both breaks.
# Here, we download the `model.safetensors.index.json` and filter
# any files not found in the index.
if not is_local:
download_safetensors_index_file_from_hf(
model_name_or_path, self.load_config.download_dir, revision
)
hf_weights_files = filter_duplicate_safetensors_files(
hf_weights_files, hf_folder
)
else:
hf_weights_files = filter_files_not_needed_for_inference(hf_weights_files)
if len(hf_weights_files) == 0:
raise RuntimeError(
f"Cannot find any model weights with `{model_name_or_path}`"
)
return hf_folder, hf_weights_files, use_safetensors
def _get_weights_iterator(
self, model_name_or_path: str, revision: Optional[str], fall_back_to_pt: bool
) -> Generator[Tuple[str, torch.Tensor], None, None]:
"""Get an iterator for the model weights based on the load format."""
hf_folder, hf_weights_files, use_safetensors = self._prepare_weights(
model_name_or_path, revision, fall_back_to_pt
)
if self.load_config.load_format == LoadFormat.NPCACHE:
# Currently np_cache only support *.bin checkpoints
assert use_safetensors is False
weights_iterator = np_cache_weights_iterator(
model_name_or_path,
self.load_config.download_dir,
hf_folder,
hf_weights_files,
)
elif use_safetensors:
weights_iterator = safetensors_weights_iterator(hf_weights_files)
else:
weights_iterator = pt_weights_iterator(hf_weights_files)
return weights_iterator
def load_model(
self,
*,
model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
multimodal_config: Optional[MultiModalConfig],
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
cache_config: CacheConfig,
) -> nn.Module:
with set_default_torch_dtype(model_config.dtype):
with torch.device(device_config.device):
model = _initialize_model(
model_config,
self.load_config,
lora_config,
multimodal_config,
cache_config,
)
weights = self._get_weights_iterator(
model_config.model,
model_config.revision,
fall_back_to_pt=getattr(model, "fall_back_to_pt_during_load", True),
)
modules = {}
for name, module in model.named_modules():
modules[name] = module
def apply_quant_method(module):
quant_method = getattr(module, "quant_method", None)
if quant_method is not None:
# print("before apply quant", module.weight, module.weight.dtype)
quant_method.process_weights_after_loading(module)
# print("after apply quant", module.weight, module.weight.dtype)
# FIXME: Remove this after Mixtral is updated
# to use quant_method.
if hasattr(module, "process_weights_after_loading"):
module.process_weights_after_loading()
if torch.cuda.current_device() == 0:
weights = tqdm(
weights, total=model.get_num_params() * 1.5, desc="load model"
)
num_shard = {}
num_loaded = {}
for name, loaded_weight in weights:
model.load_weights(None, name, loaded_weight)
module_name, shard_num = model.get_module_name(name)
num_shard[module_name] = shard_num
if module_name not in num_loaded:
num_loaded[module_name] = 1
else:
num_loaded[module_name] += 1
if num_loaded[module_name] == num_shard[module_name]:
apply_quant_method(modules[module_name])
return model.eval()
def get_model(
*,
model_config: ModelConfig,
load_config: LoadConfig,
device_config: DeviceConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
lora_config: Optional[LoRAConfig],
multimodal_config: Optional[MultiModalConfig],
cache_config: CacheConfig,
) -> nn.Module:
loader = ModelLoader(load_config)
return loader.load_model(
model_config=model_config,
device_config=device_config,
lora_config=lora_config,
multimodal_config=multimodal_config,
parallel_config=parallel_config,
scheduler_config=scheduler_config,
cache_config=cache_config,
)
# temporarily adapted from vLLM
# FIXME: in progress of refactoring the model loader
"""Utilities for selecting and loading models."""
import contextlib
import fnmatch
import hashlib
import json
import logging
import os
import tempfile
from typing import Any, Generator, Iterable, List, Optional, Tuple, Type
import filelock
import huggingface_hub.constants
import torch
from huggingface_hub import HfFileSystem, hf_hub_download, snapshot_download
from safetensors.torch import load_file, safe_open, save_file
from torch import nn
from tqdm.auto import tqdm
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME
from vllm.config import LoadConfig, ModelConfig
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.quantization import get_quantization_config
logger = logging.getLogger("srt.model_loader")
temp_dir = tempfile.gettempdir()
@contextlib.contextmanager
def set_default_torch_dtype(dtype: torch.dtype):
"""Sets the default torch dtype to the given dtype."""
old_dtype = torch.get_default_dtype()
torch.set_default_dtype(dtype)
yield
torch.set_default_dtype(old_dtype)
def get_model_architecture(model_config: ModelConfig) -> Tuple[Type[nn.Module], str]:
architectures = getattr(model_config.hf_config, "architectures", [])
# Special handling for quantized Mixtral.
# FIXME(woosuk): This is a temporary hack.
if (
model_config.quantization is not None
and model_config.quantization != "fp8"
and "MixtralForCausalLM" in architectures
):
architectures = ["QuantMixtralForCausalLM"]
for arch in architectures:
model_cls = ModelRegistry.load_model_cls(arch)
if model_cls is not None:
return (model_cls, arch)
raise ValueError(
f"Model architectures {architectures} are not supported for now. "
f"Supported architectures: {ModelRegistry.get_supported_archs()}"
)
class DisabledTqdm(tqdm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs, disable=True)
def get_lock(model_name_or_path: str, cache_dir: Optional[str] = None):
lock_dir = cache_dir or temp_dir
os.makedirs(os.path.dirname(lock_dir), exist_ok=True)
model_name = model_name_or_path.replace("/", "-")
hash_name = hashlib.sha256(model_name.encode()).hexdigest()
# add hash to avoid conflict with old users' lock files
lock_file_name = hash_name + model_name + ".lock"
# mode 0o666 is required for the filelock to be shared across users
lock = filelock.FileLock(os.path.join(lock_dir, lock_file_name), mode=0o666)
return lock
def download_weights_from_hf(
model_name_or_path: str,
cache_dir: Optional[str],
allow_patterns: List[str],
revision: Optional[str] = None,
) -> str:
"""Download model weights from Hugging Face Hub.
Args:
model_name_or_path (str): The model name or path.
cache_dir (Optional[str]): The cache directory to store the model
weights. If None, will use HF defaults.
allow_patterns (List[str]): The allowed patterns for the
weight files. Files matched by any of the patterns will be
downloaded.
revision (Optional[str]): The revision of the model.
Returns:
str: The path to the downloaded model weights.
"""
if not huggingface_hub.constants.HF_HUB_OFFLINE:
# Before we download we look at that is available:
fs = HfFileSystem()
file_list = fs.ls(model_name_or_path, detail=False, revision=revision)
# depending on what is available we download different things
for pattern in allow_patterns:
matching = fnmatch.filter(file_list, pattern)
if len(matching) > 0:
allow_patterns = [pattern]
break
logger.info("Using model weights format %s", allow_patterns)
# Use file lock to prevent multiple processes from
# downloading the same model weights at the same time.
with get_lock(model_name_or_path, cache_dir):
hf_folder = snapshot_download(
model_name_or_path,
allow_patterns=allow_patterns,
cache_dir=cache_dir,
tqdm_class=DisabledTqdm,
revision=revision,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
)
return hf_folder
def download_safetensors_index_file_from_hf(
model_name_or_path: str,
cache_dir: Optional[str],
revision: Optional[str] = None,
) -> None:
"""Download hf safetensors index file from Hugging Face Hub.
Args:
model_name_or_path (str): The model name or path.
cache_dir (Optional[str]): The cache directory to store the model
weights. If None, will use HF defaults.
revision (Optional[str]): The revision of the model.
"""
# Use file lock to prevent multiple processes from
# downloading the same model weights at the same time.
with get_lock(model_name_or_path, cache_dir):
try:
# Download the safetensors index file.
hf_hub_download(
repo_id=model_name_or_path,
filename=SAFE_WEIGHTS_INDEX_NAME,
cache_dir=cache_dir,
revision=revision,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
)
# If file not found on remote or locally, we should not fail since
# only some models will have SAFE_WEIGHTS_INDEX_NAME.
except huggingface_hub.utils.EntryNotFoundError:
logger.info("No %s found in remote.", SAFE_WEIGHTS_INDEX_NAME)
except huggingface_hub.utils.LocalEntryNotFoundError:
logger.info("No %s found in local cache.", SAFE_WEIGHTS_INDEX_NAME)
# For models like Mistral-7B-v0.3, there are both sharded
# safetensors files and a consolidated safetensors file.
# Passing both of these to the weight loader functionality breaks.
# So, we use the SAFE_WEIGHTS_INDEX_NAME to
# look up which safetensors files should be used.
def filter_duplicate_safetensors_files(
hf_weights_files: List[str], hf_folder: str
) -> List[str]:
# model.safetensors.index.json is a mapping from keys in the
# torch state_dict to safetensors file holding that weight.
index_file_name = os.path.join(hf_folder, SAFE_WEIGHTS_INDEX_NAME)
if not os.path.isfile(index_file_name):
return hf_weights_files
# Iterate through the weight_map (weight_name: safetensors files)
# to identify weights that we should use.
with open(index_file_name) as index_file:
weight_map = json.load(index_file)["weight_map"]
weight_files_in_index = set()
for weight_name in weight_map:
weight_files_in_index.add(os.path.join(hf_folder, weight_map[weight_name]))
# Filter out any fields that are not found in the index file.
hf_weights_files = [f for f in hf_weights_files if f in weight_files_in_index]
return hf_weights_files
def safetensors_weights_iterator(
hf_weights_files: List[str],
) -> Generator[Tuple[str, torch.Tensor], None, None]:
"""Iterate over the weights in the model safetensor files."""
for st_file in hf_weights_files:
with safe_open(st_file, framework="pt") as f:
for name in f.keys(): # noqa: SIM118
param = f.get_tensor(name)
yield name, param
def get_quant_config(
model_config: ModelConfig, load_config: LoadConfig
) -> QuantizationConfig:
quant_cls = get_quantization_config(model_config.quantization)
# Read the quantization config from the HF model config, if available.
hf_quant_config = getattr(model_config.hf_config, "quantization_config", None)
if hf_quant_config is None:
# compressed-tensors uses a compressions_config
hf_quant_config = getattr(model_config.hf_config, "compression_config", None)
if hf_quant_config is not None:
return quant_cls.from_config(hf_quant_config)
# In case of bitsandbytes/QLoRA, get quant config from the adapter model.
if model_config.quantization == "bitsandbytes":
if (
not load_config.model_loader_extra_config
or "qlora_adapter_name_or_path" not in load_config.model_loader_extra_config
):
return quant_cls.from_config({"adapter_name_or_path": ""})
model_name_or_path = load_config.model_loader_extra_config[
"qlora_adapter_name_or_path"
]
else:
model_name_or_path = model_config.model
is_local = os.path.isdir(model_name_or_path)
if not is_local:
# Download the config files.
with get_lock(model_name_or_path, load_config.download_dir):
hf_folder = snapshot_download(
model_name_or_path,
revision=model_config.revision,
allow_patterns="*.json",
cache_dir=load_config.download_dir,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
tqdm_class=DisabledTqdm,
)
else:
hf_folder = model_name_or_path
possible_config_filenames = quant_cls.get_config_filenames()
# If the quantization config is not found, use the default config.
if not possible_config_filenames:
return quant_cls()
config_files = glob.glob(os.path.join(hf_folder, "*.json"))
quant_config_files = [
f for f in config_files if any(f.endswith(x) for x in possible_config_filenames)
]
if len(quant_config_files) == 0:
raise ValueError(f"Cannot find the config file for {model_config.quantization}")
if len(quant_config_files) > 1:
raise ValueError(
f"Found multiple config files for {model_config.quantization}: "
f"{quant_config_files}"
)
quant_config_file = quant_config_files[0]
with open(quant_config_file, "r") as f:
config = json.load(f)
if model_config.quantization == "bitsandbytes":
config["adapter_name_or_path"] = model_name_or_path
return quant_cls.from_config(config)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment