Unverified Commit 2c1a695f authored by HAI's avatar HAI Committed by GitHub
Browse files

ROCm: sgl-kernel enablement starting with sgl_moe_align_block (#3287)

parent d39899e8
......@@ -28,6 +28,9 @@ RUN git clone ${SGL_REPO} \
echo "Using ${SGL_BRANCH} branch."; \
git checkout ${SGL_BRANCH}; \
fi \
&& cd sgl-kernel \
&& python setup_rocm.py install \
&& cd .. \
&& if [ "$BUILD_TYPE" = "srt" ]; then \
python -m pip --no-cache-dir install -e "python[srt_hip]"; \
else \
......
......@@ -32,7 +32,9 @@ git clone -b v0.4.2.post1 https://github.com/sgl-project/sglang.git
cd sglang
pip install --upgrade pip
pip install sgl-kernel --force-reinstall --no-deps
cd sgl-kernel
python setup_rocm.py install
cd ..
pip install -e "python[all_hip]"
```
......
......@@ -31,7 +31,7 @@ srt = [
# HIP (Heterogeneous-computing Interface for Portability) for AMD
# => base docker rocm/vllm-dev:20241022, not from public vllm whl
srt_hip = ["sglang[runtime_common]", "torch", "vllm==0.6.7.dev2", "outlines==0.1.11"]
srt_hip = ["sglang[runtime_common]", "torch", "vllm==0.6.7.dev2", "outlines==0.1.11", "sgl-kernel>=0.0.3.post1"]
# xpu is not enabled in public vllm and torch whl,
# need to follow https://docs.vllm.ai/en/latest/getting_started/xpu-installation.htmlinstall vllm
srt_xpu = ["sglang[runtime_common]", "outlines>=0.0.44,<0.1.0"]
......
......@@ -15,18 +15,10 @@ from vllm import _custom_ops as ops
from sglang.srt.layers.moe.topk import select_experts
from sglang.srt.layers.quantization.fp8_kernel import per_token_group_quant_fp8
from sglang.srt.utils import (
direct_register_custom_op,
get_device_name,
is_cuda_available,
is_hip,
)
from sglang.srt.utils import direct_register_custom_op, get_device_name, is_hip
is_cuda = is_cuda_available()
is_hip_flag = is_hip()
if is_cuda:
from sgl_kernel import moe_align_block_size as sgl_moe_align_block_size
from sgl_kernel import moe_align_block_size as sgl_moe_align_block_size
logger = logging.getLogger(__name__)
padding_size = 128 if bool(int(os.getenv("MOE_PADDING", "0"))) else 0
......@@ -415,7 +407,7 @@ def moe_align_block_size(
)
num_tokens_post_pad = torch.empty((1), dtype=torch.int32, device=topk_ids.device)
if num_experts >= 224:
if enable_moe_align_block_size_triton or is_hip_flag:
if enable_moe_align_block_size_triton:
moe_align_block_size_triton(
topk_ids,
num_experts,
......
# Copyright 2025 SGLang Team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import multiprocessing
import os
import sys
from pathlib import Path
import torch
from setuptools import find_packages, setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
root = Path(__file__).parent.resolve()
if "bdist_wheel" in sys.argv and "--plat-name" not in sys.argv:
sys.argv.extend(["--plat-name", "manylinux2014_x86_64"])
def _get_version():
with open(root / "pyproject.toml") as f:
for line in f:
if line.startswith("version"):
return line.split("=")[1].strip().strip('"')
operator_namespace = "sgl_kernels"
include_dirs = [
root / "src" / "sgl-kernel" / "include",
root / "src" / "sgl-kernel" / "csrc",
]
sources = [
"src/sgl-kernel/torch_extension_rocm.cc",
"src/sgl-kernel/csrc/moe_align_kernel.cu",
]
cxx_flags = ["-O3"]
libraries = ["hiprtc", "amdhip64", "c10", "torch", "torch_python"]
extra_link_args = ["-Wl,-rpath,$ORIGIN/../../torch/lib", "-L/usr/lib/x86_64-linux-gnu"]
hipcc_flags = [
"-DNDEBUG",
f"-DOPERATOR_NAMESPACE={operator_namespace}",
"-O3",
"-Xcompiler",
"-fPIC",
"-std=c++17",
"-D__HIP_PLATFORM_AMD__=1",
"--amdgpu-target=gfx942",
"-DENABLE_BF16",
"-DENABLE_FP8",
]
setup(
name="sgl-kernel",
version=_get_version(),
packages=find_packages(),
package_dir={"": "src"},
ext_modules=[
CUDAExtension(
name="sgl_kernel.ops._kernels",
sources=sources,
include_dirs=include_dirs,
extra_compile_args={
"nvcc": hipcc_flags,
"cxx": cxx_flags,
},
libraries=libraries,
extra_link_args=extra_link_args,
py_limited_api=True,
),
],
cmdclass={
"build_ext": BuildExtension.with_options(
use_ninja=True, max_jobs=multiprocessing.cpu_count()
)
},
options={"bdist_wheel": {"py_limited_api": "cp39"}},
install_requires=["torch"],
)
/* Copyright 2025 SGLang Team. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <ATen/core/dispatch/Dispatcher.h>
#include <torch/library.h>
#include "sgl_kernels_ops.h"
TORCH_LIBRARY_EXPAND(sgl_kernels, m) {
// moe_align_block_size
m.def(
"moe_align_block_size(Tensor topk_ids, int num_experts, int block_size, Tensor! sorted_token_ids, Tensor! "
"experts_ids, Tensor! num_tokens_post_pad, Tensor! token_cnts_buffer, Tensor! cumsum_buffer) -> ()");
m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);
}
REGISTER_EXTENSION(_kernels)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment