Unverified Commit 2a2ff9a8 authored by Yineng Zhang's avatar Yineng Zhang Committed by GitHub
Browse files

refactor: use registry for _get_attention_backend_from_str (#10629)

parent 5291f32d
ATTENTION_BACKENDS = {}
def register_attention_backend(name):
def decorator(fn):
ATTENTION_BACKENDS[name] = fn
return fn
return decorator
@register_attention_backend("flashinfer")
def create_flashinfer_backend(runner):
import torch
if not runner.use_mla_backend:
from sglang.srt.layers.attention.flashinfer_backend import FlashInferAttnBackend
# Init streams
if runner.server_args.speculative_algorithm == "EAGLE":
if (
not hasattr(runner, "plan_stream_for_flashinfer")
or not runner.plan_stream_for_flashinfer
):
runner.plan_stream_for_flashinfer = torch.cuda.Stream()
return FlashInferAttnBackend(runner)
else:
from sglang.srt.layers.attention.flashinfer_mla_backend import (
FlashInferMLAAttnBackend,
)
return FlashInferMLAAttnBackend(runner)
@register_attention_backend("trtllm_mla")
def create_trtllm_mla_backend(runner):
if not runner.use_mla_backend:
raise ValueError("trtllm_mla backend can only be used with MLA models.")
from sglang.srt.layers.attention.trtllm_mla_backend import TRTLLMMLABackend
return TRTLLMMLABackend(runner)
@register_attention_backend("aiter")
def create_aiter_backend(runner):
from sglang.srt.layers.attention.aiter_backend import AiterAttnBackend
return AiterAttnBackend(runner)
@register_attention_backend("wave")
def create_wave_backend(runner):
from sglang.srt.layers.attention.wave_backend import WaveAttnBackend
return WaveAttnBackend(runner)
@register_attention_backend("ascend")
def create_ascend_backend(runner):
from sglang.srt.layers.attention.ascend_backend import AscendAttnBackend
return AscendAttnBackend(runner)
@register_attention_backend("triton")
def create_triton_backend(runner):
assert not runner.model_config.is_encoder_decoder, (
"Cross attention is not supported in the triton attention backend. "
"Please use `--attention-backend flashinfer`."
)
if runner.server_args.enable_double_sparsity:
from sglang.srt.layers.attention.double_sparsity_backend import (
DoubleSparseAttnBackend,
)
return DoubleSparseAttnBackend(runner)
else:
from sglang.srt.layers.attention.triton_backend import TritonAttnBackend
return TritonAttnBackend(runner)
@register_attention_backend("torch_native")
def create_torch_native_backend(runner):
from sglang.srt.layers.attention.torch_native_backend import TorchNativeAttnBackend
return TorchNativeAttnBackend(runner)
@register_attention_backend("flex_attention")
def create_flex_attention_backend(runner):
from sglang.srt.layers.attention.torch_flex_backend import TorchFlexAttnBackend
return TorchFlexAttnBackend(runner)
@register_attention_backend("flashmla")
def create_flashmla_backend(runner):
from sglang.srt.layers.attention.flashmla_backend import FlashMLABackend
return FlashMLABackend(runner)
@register_attention_backend("fa3")
def create_flashattention_v3_backend(runner):
import torch
assert (
torch.cuda.get_device_capability()[0] == 8 and not runner.use_mla_backend
) or torch.cuda.get_device_capability()[0] == 9, (
"FlashAttention v3 Backend requires SM>=80 and SM<=90. "
"Please use `--attention-backend flashinfer`."
)
from sglang.srt.layers.attention.flashattention_backend import FlashAttentionBackend
return FlashAttentionBackend(runner)
@register_attention_backend("fa4")
def create_flashattention_v4_backend(runner):
assert (
runner.use_mla_backend
), "FlashAttention v4 Support is at an early stage, only MLA model supported now"
from sglang.srt.layers.attention.flashattention_backend import FlashAttentionBackend
return FlashAttentionBackend(runner, fa_impl_ver=4)
@register_attention_backend("cutlass_mla")
def create_cutlass_mla_backend(runner):
from sglang.srt.layers.attention.cutlass_mla_backend import CutlassMLABackend
return CutlassMLABackend(runner)
@register_attention_backend("trtllm_mha")
def create_trtllm_mha_backend(runner):
if runner.use_mla_backend:
raise ValueError("trtllm_mha backend can only be used with non-MLA models.")
from sglang.srt.layers.attention.trtllm_mha_backend import TRTLLMHAAttnBackend
return TRTLLMHAAttnBackend(runner)
@register_attention_backend("intel_amx")
def create_intel_amx_backend(runner):
from sglang.srt.layers.attention.intel_amx_backend import IntelAMXAttnBackend
return IntelAMXAttnBackend(runner)
@register_attention_backend("dual_chunk_flash_attn")
def create_dual_chunk_flash_attn_backend(runner):
from sglang.srt.layers.attention.dual_chunk_flashattention_backend import (
DualChunkFlashAttentionBackend,
)
return DualChunkFlashAttentionBackend(runner)
@register_attention_backend("hybrid_linear_attn")
def create_hybrid_linear_attn_backend(runner):
assert (
runner.is_hybrid_gdn
), "hybrid_linear_attn backend can only be used with hybrid GDN models."
from sglang.srt.layers.attention.hybrid_linear_attn_backend import (
HybridLinearAttnBackend,
MambaAttnBackend,
)
from sglang.srt.utils import is_blackwell, is_npu
if is_npu():
from sglang.srt.layers.attention.ascend_backend import AscendAttnBackend
full_attn_backend = AscendAttnBackend(runner)
elif is_blackwell():
from sglang.srt.layers.attention.triton_backend import TritonAttnBackend
full_attn_backend = TritonAttnBackend(runner)
else:
from sglang.srt.layers.attention.flashattention_backend import (
FlashAttentionBackend,
)
full_attn_backend = FlashAttentionBackend(runner)
linear_attn_backend = MambaAttnBackend(runner)
full_attn_layers = runner.model_config.hf_config.full_attention_layer_ids
return HybridLinearAttnBackend(
full_attn_backend, linear_attn_backend, full_attn_layers
)
......@@ -60,6 +60,7 @@ from sglang.srt.eplb.expert_location import (
set_global_expert_location_metadata,
)
from sglang.srt.eplb.expert_location_updater import ExpertLocationUpdater
from sglang.srt.layers.attention.attention_registry import ATTENTION_BACKENDS
from sglang.srt.layers.attention.tbo_backend import TboAttnBackend
from sglang.srt.layers.dp_attention import (
get_attention_tp_group,
......@@ -1733,155 +1734,9 @@ class ModelRunner:
return attn_backend
def _get_attention_backend_from_str(self, backend_str: str):
if backend_str == "flashinfer":
if not self.use_mla_backend:
from sglang.srt.layers.attention.flashinfer_backend import (
FlashInferAttnBackend,
)
# Init streams
if self.server_args.speculative_algorithm == "EAGLE":
if (
not hasattr(self, "plan_stream_for_flashinfer")
or not self.plan_stream_for_flashinfer
):
self.plan_stream_for_flashinfer = torch.cuda.Stream()
return FlashInferAttnBackend(self)
else:
from sglang.srt.layers.attention.flashinfer_mla_backend import (
FlashInferMLAAttnBackend,
)
return FlashInferMLAAttnBackend(self)
elif backend_str == "aiter":
from sglang.srt.layers.attention.aiter_backend import AiterAttnBackend
return AiterAttnBackend(self)
elif self.server_args.attention_backend == "wave":
from sglang.srt.layers.attention.wave_backend import WaveAttnBackend
return WaveAttnBackend(self)
elif backend_str == "ascend":
from sglang.srt.layers.attention.ascend_backend import AscendAttnBackend
return AscendAttnBackend(self)
elif backend_str == "triton":
assert not self.model_config.is_encoder_decoder, (
"Cross attention is not supported in the triton attention backend. "
"Please use `--attention-backend flashinfer`."
)
if self.server_args.enable_double_sparsity:
from sglang.srt.layers.attention.double_sparsity_backend import (
DoubleSparseAttnBackend,
)
return DoubleSparseAttnBackend(self)
else:
from sglang.srt.layers.attention.triton_backend import TritonAttnBackend
return TritonAttnBackend(self)
elif backend_str == "torch_native":
from sglang.srt.layers.attention.torch_native_backend import (
TorchNativeAttnBackend,
)
return TorchNativeAttnBackend(self)
elif backend_str == "flex_attention":
from sglang.srt.layers.attention.torch_flex_backend import (
TorchFlexAttnBackend,
)
return TorchFlexAttnBackend(self)
elif backend_str == "flashmla":
from sglang.srt.layers.attention.flashmla_backend import FlashMLABackend
return FlashMLABackend(self)
elif backend_str == "fa3":
assert (
torch.cuda.get_device_capability()[0] == 8 and not self.use_mla_backend
) or torch.cuda.get_device_capability()[0] == 9, (
"FlashAttention v3 Backend requires SM>=80 and SM<=90. "
"Please use `--attention-backend flashinfer`."
)
from sglang.srt.layers.attention.flashattention_backend import (
FlashAttentionBackend,
)
return FlashAttentionBackend(self)
elif backend_str == "fa4":
assert (
self.use_mla_backend
), "FlashAttention v4 Support is at an early stage, only MLA model supported now"
from sglang.srt.layers.attention.flashattention_backend import (
FlashAttentionBackend,
)
return FlashAttentionBackend(self, fa_impl_ver=4)
elif backend_str == "cutlass_mla":
from sglang.srt.layers.attention.cutlass_mla_backend import (
CutlassMLABackend,
)
return CutlassMLABackend(self)
elif backend_str == "trtllm_mla":
if not self.use_mla_backend:
raise ValueError("trtllm_mla backend can only be used with MLA models.")
from sglang.srt.layers.attention.trtllm_mla_backend import TRTLLMMLABackend
return TRTLLMMLABackend(self)
elif backend_str == "trtllm_mha":
if self.use_mla_backend:
raise ValueError(
"trtllm_mha backend can only be used with non-MLA models."
)
from sglang.srt.layers.attention.trtllm_mha_backend import (
TRTLLMHAAttnBackend,
)
return TRTLLMHAAttnBackend(self)
elif backend_str == "intel_amx":
from sglang.srt.layers.attention.intel_amx_backend import (
IntelAMXAttnBackend,
)
return IntelAMXAttnBackend(self)
elif backend_str == "dual_chunk_flash_attn":
from sglang.srt.layers.attention.dual_chunk_flashattention_backend import (
DualChunkFlashAttentionBackend,
)
return DualChunkFlashAttentionBackend(self)
elif backend_str == "hybrid_linear_attn":
assert (
self.is_hybrid_gdn
), "hybrid_linear_attn backend can only be used with hybrid GDN models."
from sglang.srt.layers.attention.hybrid_linear_attn_backend import (
HybridLinearAttnBackend,
MambaAttnBackend,
)
if _is_npu:
from sglang.srt.layers.attention.ascend_backend import AscendAttnBackend
full_attn_backend = AscendAttnBackend(self)
elif is_blackwell():
from sglang.srt.layers.attention.triton_backend import TritonAttnBackend
full_attn_backend = TritonAttnBackend(self)
else:
from sglang.srt.layers.attention.flashattention_backend import (
FlashAttentionBackend,
)
full_attn_backend = FlashAttentionBackend(self)
linear_attn_backend = MambaAttnBackend(self)
full_attn_layers = self.model_config.hf_config.full_attention_layer_ids
return HybridLinearAttnBackend(
full_attn_backend, linear_attn_backend, full_attn_layers
)
else:
if backend_str not in ATTENTION_BACKENDS:
raise ValueError(f"Invalid attention backend: {backend_str}")
return ATTENTION_BACKENDS[backend_str](self)
def init_double_sparsity_channel_config(self, selected_channel):
selected_channel = "." + selected_channel + "_proj"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment