Unverified Commit 27e8ffed authored by Liangsheng Yin's avatar Liangsheng Yin Committed by GitHub
Browse files

[1/N] DP-refactor: move dp balance code into scheduler's mixin class (#10004)

parent 4dbb34fe
......@@ -500,6 +500,7 @@ class Scheduler(
# Init metrics stats
self.init_metrics(tp_rank, pp_rank, dp_rank)
self.init_kv_events(server_args.kv_events_config)
self.init_dp_balance(dp_balance_meta)
# Init disaggregation
self.disaggregation_mode = DisaggregationMode(
......@@ -545,15 +546,6 @@ class Scheduler(
]
)
self.balance_meta = dp_balance_meta
if (
server_args.enable_dp_attention
and server_args.load_balance_method == "minimum_tokens"
):
assert dp_balance_meta is not None
self.recv_dp_balance_id_this_term = []
def init_tokenizer(self):
server_args = self.server_args
self.is_generation = self.model_config.is_generation
......@@ -1126,11 +1118,7 @@ class Scheduler(
self,
recv_req: TokenizedGenerateReqInput,
):
if (
self.server_args.enable_dp_attention
and self.server_args.load_balance_method == "minimum_tokens"
):
self.recv_dp_balance_id_this_term.append(recv_req.dp_balance_id)
self.maybe_update_dp_balance_data(recv_req)
# Create a new request
if (
......@@ -1568,11 +1556,7 @@ class Scheduler(
# Handle DP attention
if need_dp_attn_preparation:
if (
self.server_args.load_balance_method == "minimum_tokens"
and self.forward_ct % 40 == 0
):
self.handle_dp_balance_data(ret)
self.maybe_handle_dp_balance_data()
ret = self.prepare_mlp_sync_batch(ret)
return ret
......@@ -1897,86 +1881,6 @@ class Scheduler(
disable_overlap_schedule=self.server_args.disable_overlap_schedule,
)
def handle_dp_balance_data(self, local_batch: ScheduleBatch):
def gather_dp_balance_info(holding_tokens_list) -> Union[None, List[List[int]]]:
"""gather recv_dp_balance_id_this_term and holding tokens per worker for dp balance"""
recv_list = self.recv_dp_balance_id_this_term
assert len(recv_list) <= 511, (
"The number of requests received this round is too large. "
"Please increase gather_tensor_size and onfly_info_size."
)
# The maximum size of the tensor used for gathering data from all workers.
gather_tensor_size = 512
# recv_tensor: | holding_tokens | len(recv_dp_balance_id) | recv_dp_balance_ids
recv_tensor = torch.zeros(gather_tensor_size, dtype=torch.int32)
recv_tensor[0] = holding_tokens_list
recv_tensor[1] = len(
recv_list
) # The first element is the length of the list.
recv_tensor[2 : len(recv_list) + 2] = torch.tensor(
recv_list, dtype=torch.int32
)
if self.tp_rank == 0:
gathered_list = [
torch.zeros(gather_tensor_size, dtype=torch.int32)
for _ in range(self.balance_meta.num_workers)
]
else:
gathered_list = None
torch.distributed.gather(
recv_tensor, gathered_list, group=self.tp_cpu_group
)
gathered_id_list_per_worker = None
if self.tp_rank == 0:
gathered_id_list_per_worker = []
holding_tokens_list = []
for tensor in gathered_list:
holding_tokens_list.append(tensor[0].item())
list_length = tensor[1].item()
gathered_id_list_per_worker.append(
tensor[2 : list_length + 2].tolist()
)
return gathered_id_list_per_worker, holding_tokens_list
def write_shared_dp_balance_info(new_recv_rid_lists, local_tokens):
meta = self.balance_meta
with meta.mutex:
onfly_list: List[Dict[int, int]] = meta.get_shared_onfly()
assert len(new_recv_rid_lists) == len(
onfly_list
), "num_worker not equal"
# 1.Check if the rid received by each worker this round is present in onfly.
# If it is, remove the corresponding onfly item.
worker_id = 0
for new_recv_rids, on_fly_reqs in zip(new_recv_rid_lists, onfly_list):
for new_recv_rid in new_recv_rids:
assert (
new_recv_rid in on_fly_reqs
), f"{new_recv_rid=} not in {worker_id=} {on_fly_reqs=}, data consistency is wrong"
del on_fly_reqs[new_recv_rid]
worker_id += 1
# 2. Atomically write local_tokens and onfly into shm under the mutex
meta.set_shared_onfly_info(onfly_list)
meta.set_shared_local_tokens(local_tokens)
holding_tokens = self.get_load()
new_recv_dp_balance_id_list, holding_token_list = gather_dp_balance_info(
holding_tokens
)
self.recv_dp_balance_id_this_term.clear()
if self.tp_rank == 0: # only first worker write info
write_shared_dp_balance_info(
new_recv_dp_balance_id_list, holding_token_list
)
@staticmethod
def prepare_mlp_sync_batch_raw(
local_batch: ScheduleBatch,
......
from __future__ import annotations
import logging
import time
from collections import defaultdict
from typing import List, Optional
from typing import TYPE_CHECKING, Dict, List, Optional, Union
import torch
from sglang.srt.disaggregation.kv_events import EventPublisherFactory, KVEventBatch
from sglang.srt.disaggregation.utils import DisaggregationMode
from sglang.srt.managers.io_struct import TokenizedGenerateReqInput
from sglang.srt.managers.schedule_policy import PrefillAdder
from sglang.srt.managers.scheduler import Req, ScheduleBatch
from sglang.srt.managers.utils import DPBalanceMeta
from sglang.srt.metrics.collector import SchedulerMetricsCollector, SchedulerStats
from sglang.srt.utils import get_bool_env_var
if TYPE_CHECKING:
from sglang.srt.managers.scheduler import Scheduler
logger = logging.getLogger(__name__)
RECORD_STEP_TIME = get_bool_env_var("SGLANG_RECORD_STEP_TIME")
......@@ -28,7 +37,9 @@ class KvMetrics:
class SchedulerMetricsMixin:
def init_metrics(self, tp_rank: int, pp_rank: int, dp_rank: Optional[int]):
def init_metrics(
self: Scheduler, tp_rank: int, pp_rank: int, dp_rank: Optional[int]
):
self.last_gen_throughput: float = 0.0
self.last_input_throughput: float = 0.0
self.step_time_dict = defaultdict(list) # Dict[batch size -> step time]
......@@ -50,14 +61,24 @@ class SchedulerMetricsMixin:
labels["dp_rank"] = dp_rank
self.metrics_collector = SchedulerMetricsCollector(labels=labels)
def init_kv_events(self, kv_events_config: Optional[str]):
def init_dp_balance(self: Scheduler, dp_balance_meta: Optional[DPBalanceMeta]):
self.balance_meta = dp_balance_meta
if (
self.server_args.enable_dp_attention
and self.server_args.load_balance_method == "minimum_tokens"
):
assert dp_balance_meta is not None
self.recv_dp_balance_id_this_term = []
def init_kv_events(self: Scheduler, kv_events_config: Optional[str]):
if self.enable_kv_cache_events:
self.kv_event_publisher = EventPublisherFactory.create(
kv_events_config, self.attn_dp_rank
)
def log_prefill_stats(
self,
self: Scheduler,
adder: PrefillAdder,
can_run_list: List[Req],
running_bs: int,
......@@ -138,7 +159,7 @@ class SchedulerMetricsMixin:
self._publish_kv_events()
def log_decode_stats(
self, can_run_cuda_graph: bool, running_batch: ScheduleBatch = None
self: Scheduler, can_run_cuda_graph: bool, running_batch: ScheduleBatch = None
):
batch = running_batch or self.running_batch
......@@ -220,7 +241,7 @@ class SchedulerMetricsMixin:
self._emit_kv_metrics()
self._publish_kv_events()
def _emit_kv_metrics(self):
def _emit_kv_metrics(self: Scheduler):
kv_metrics = KvMetrics()
kv_metrics.request_active_slots = self.stats.num_running_reqs
kv_metrics.request_total_slots = self.max_running_requests
......@@ -236,9 +257,94 @@ class SchedulerMetricsMixin:
if not self.send_metrics_from_scheduler.closed:
self.send_metrics_from_scheduler.send_pyobj(kv_metrics)
def _publish_kv_events(self):
def _publish_kv_events(self: Scheduler):
if self.enable_kv_cache_events:
events = self.tree_cache.take_events()
if events:
batch = KVEventBatch(ts=time.time(), events=events)
self.kv_event_publisher.publish(batch)
def maybe_update_dp_balance_data(
self: Scheduler, recv_req: TokenizedGenerateReqInput
):
if (
self.server_args.enable_dp_attention
and self.server_args.load_balance_method == "minimum_tokens"
):
self.recv_dp_balance_id_this_term.append(recv_req.dp_balance_id)
def maybe_handle_dp_balance_data(self: Scheduler):
if (
self.server_args.load_balance_method == "minimum_tokens"
and self.forward_ct % 40 == 0
):
holding_tokens = self.get_load()
new_recv_dp_balance_id_list, holding_token_list = (
self.gather_dp_balance_info(holding_tokens)
)
self.recv_dp_balance_id_this_term.clear()
if self.tp_rank == 0: # only first worker write info
self.write_shared_dp_balance_info(
new_recv_dp_balance_id_list, holding_token_list
)
def gather_dp_balance_info(
self: Scheduler, holding_tokens_list
) -> Union[None, List[List[int]]]:
"""gather recv_dp_balance_id_this_term and holding tokens per worker for dp balance"""
recv_list = self.recv_dp_balance_id_this_term
assert len(recv_list) <= 511, (
"The number of requests received this round is too large. "
"Please increase gather_tensor_size and onfly_info_size."
)
# The maximum size of the tensor used for gathering data from all workers.
gather_tensor_size = 512
# recv_tensor: | holding_tokens | len(recv_dp_balance_id) | recv_dp_balance_ids
recv_tensor = torch.zeros(gather_tensor_size, dtype=torch.int32)
recv_tensor[0] = holding_tokens_list
recv_tensor[1] = len(recv_list) # The first element is the length of the list.
recv_tensor[2 : len(recv_list) + 2] = torch.tensor(recv_list, dtype=torch.int32)
if self.tp_rank == 0:
gathered_list = [
torch.zeros(gather_tensor_size, dtype=torch.int32)
for _ in range(self.balance_meta.num_workers)
]
else:
gathered_list = None
torch.distributed.gather(recv_tensor, gathered_list, group=self.tp_cpu_group)
gathered_id_list_per_worker = None
if self.tp_rank == 0:
gathered_id_list_per_worker = []
holding_tokens_list = []
for tensor in gathered_list:
holding_tokens_list.append(tensor[0].item())
list_length = tensor[1].item()
gathered_id_list_per_worker.append(tensor[2 : list_length + 2].tolist())
return gathered_id_list_per_worker, holding_tokens_list
def write_shared_dp_balance_info(self: Scheduler, new_recv_rid_lists, local_tokens):
meta = self.balance_meta
with meta.mutex:
onfly_list: List[Dict[int, int]] = meta.get_shared_onfly()
assert len(new_recv_rid_lists) == len(onfly_list), "num_worker not equal"
# 1.Check if the rid received by each worker this round is present in onfly.
# If it is, remove the corresponding onfly item.
worker_id = 0
for new_recv_rids, on_fly_reqs in zip(new_recv_rid_lists, onfly_list):
for new_recv_rid in new_recv_rids:
assert (
new_recv_rid in on_fly_reqs
), f"{new_recv_rid=} not in {worker_id=} {on_fly_reqs=}, data consistency is wrong"
del on_fly_reqs[new_recv_rid]
worker_id += 1
# 2. Atomically write local_tokens and onfly into shm under the mutex
meta.set_shared_onfly_info(onfly_list)
meta.set_shared_local_tokens(local_tokens)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment