Unverified Commit 24cafe31 authored by yizhang2077's avatar yizhang2077 Committed by GitHub
Browse files

add config to swtich from vllm custom allreduce to sgl_kernel custom allreduce (#2981)

parent 5a176c92
......@@ -3,6 +3,7 @@ import contextlib
import functools
import importlib
import logging
import os
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import torch
......@@ -11,12 +12,19 @@ import torch.library
from sglang.srt.utils import is_hpu
logger = logging.getLogger(__name__)
use_vllm_custom_allreduce = os.environ.get("USE_VLLM_CUSTOM_ALLREDUCE", default=False)
if not is_hpu():
try:
import sgl_kernel
except ImportError as e:
logger.warning("Failed to import from custom_ar with %r", e)
if use_vllm_custom_allreduce:
try:
import vllm._C
except ImportError as e:
logger.warning("Failed to import from vllm._C with %r", e)
else:
try:
import sgl_kernel
except ImportError as e:
logger.warning("Failed to import from custom_ar with %r", e)
def hint_on_error(fn):
......@@ -48,43 +56,78 @@ def hint_on_error(fn):
return wrapper
# custom ar
def init_custom_ar(
rank_id: int,
world_size: int,
rank_data_base: torch.Tensor,
buffers: List[int],
tmp_result_buffers: List[int],
barrier_in: List[int],
barrier_out: List[int],
) -> int:
return sgl_kernel.ops.init_custom_reduce(
rank_id,
world_size,
rank_data_base,
buffers,
tmp_result_buffers,
barrier_in,
barrier_out,
)
def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor) -> None:
sgl_kernel.ops.custom_reduce(fa, inp, out)
if use_vllm_custom_allreduce:
# custom ar
def init_custom_ar(
ipc_tensors: List[torch.Tensor],
rank_data: torch.Tensor,
rank: int,
full_nvlink: bool,
) -> int:
return torch.ops._C_custom_ar.init_custom_ar(
ipc_tensors, rank_data, rank, full_nvlink
)
def dispose(fa: int) -> None:
sgl_kernel.ops.custom_dispose(fa)
def all_reduce(
fa: int,
inp: torch.Tensor,
out: torch.Tensor,
reg_buffer: int,
reg_buffer_sz_bytes: int,
) -> None:
torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer, reg_buffer_sz_bytes)
def dispose(fa: int) -> None:
torch.ops._C_custom_ar.dispose(fa)
def meta_size() -> int:
return torch.ops._C_custom_ar.meta_size()
def register_buffer(fa: int, ipc_tensors: List[int]) -> None:
return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[int], List[int]]:
return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
def register_graph_buffers(
fa: int, handles: List[List[int]], offsets: List[List[int]]
) -> None:
torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
else:
# custom ar
def init_custom_ar(
rank_id: int,
world_size: int,
rank_data_base: torch.Tensor,
buffers: List[int],
tmp_result_buffers: List[int],
barrier_in: List[int],
barrier_out: List[int],
) -> int:
return sgl_kernel.ops.init_custom_reduce(
rank_id,
world_size,
rank_data_base,
buffers,
tmp_result_buffers,
barrier_in,
barrier_out,
)
def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor) -> None:
sgl_kernel.ops.custom_reduce(fa, inp, out)
def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[int], List[int]]:
return sgl_kernel.ops.get_graph_buffer_ipc_meta(fa)
def dispose(fa: int) -> None:
sgl_kernel.ops.custom_dispose(fa)
def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[int], List[int]]:
return sgl_kernel.ops.get_graph_buffer_ipc_meta(fa)
def register_graph_buffers(
fa: int, handles: List[List[int]], offsets: List[List[int]]
) -> None:
sgl_kernel.ops.register_graph_buffers(fa, handles, offsets)
def register_graph_buffers(
fa: int, handles: List[List[int]], offsets: List[List[int]]
) -> None:
sgl_kernel.ops.register_graph_buffers(fa, handles, offsets)
# temporary fix for https://github.com/vllm-project/vllm/issues/5456
......
......@@ -21,8 +21,10 @@ from sglang.srt.distributed.parallel_state import in_the_same_node_as
from sglang.srt.utils import cuda_device_count_stateless, is_cuda
try:
import sgl_kernel
if ops.use_vllm_custom_allreduce:
ops.meta_size()
else:
import sgl_kernel
custom_ar = True
except Exception:
# For AMD GPUs and CPUs
......@@ -201,33 +203,58 @@ class CustomAllreduce:
self.world_size = world_size
self.full_nvlink = full_nvlink
# From TensorRT-LLM getMaxRequiredWorkspaceSize
self.max_required_workspace_size = [16 * 1024 * 1024, 8 * 1024 * 1024]
# sizeof(uint32_t) * (MAX_ALL_REDUCE_BLOCKS + 2) * MAX_RANKS_PER_NODE;
self.barrier_max_size = 8 * (36 + 2) * 8
self.buffer_ptrs = self.create_shared_buffer(max_size, group=group)
self.tmp_result_buffer_ptrs = self.create_shared_buffer(max_size, group=group)
self.rank_data_base = torch.empty(
8 * 1024 * 1024, dtype=torch.uint8, device=self.device
)
self.barrier_in_ptrs = self.create_shared_buffer(
self.barrier_max_size, group=group
)
self.barrier_out_ptrs = self.create_shared_buffer(
self.barrier_max_size, group=group
)
self._ptr = ops.init_custom_ar(
rank,
world_size,
self.rank_data_base,
self.buffer_ptrs,
self.tmp_result_buffer_ptrs,
self.barrier_in_ptrs,
self.barrier_out_ptrs,
)
if ops.use_vllm_custom_allreduce:
# Buffers memory are owned by this Python class and passed to C++.
# Meta data composes of two parts: meta data for synchronization and a
# temporary buffer for storing intermediate allreduce results.
self.meta_ptrs = self.create_shared_buffer(
ops.meta_size() + max_size, group=group
)
# This is a pre-registered IPC buffer. In eager mode, input tensors
# are first copied into this buffer before allreduce is performed
self.buffer_ptrs = self.create_shared_buffer(max_size, group=group)
# This is a buffer for storing the tuples of pointers pointing to
# IPC buffers from all ranks. Each registered tuple has size of
# 8*world_size bytes where world_size is at most 8. Allocating 8MB
# is enough for 131072 such tuples. The largest model I've seen only
# needs less than 10000 of registered tuples.
self.rank_data = torch.empty(
8 * 1024 * 1024, dtype=torch.uint8, device=self.device
)
self._ptr = ops.init_custom_ar(
self.meta_ptrs, self.rank_data, rank, self.full_nvlink
)
ops.register_buffer(self._ptr, self.buffer_ptrs)
else:
# From TensorRT-LLM getMaxRequiredWorkspaceSize
self.max_required_workspace_size = [16 * 1024 * 1024, 8 * 1024 * 1024]
# sizeof(uint32_t) * (MAX_ALL_REDUCE_BLOCKS + 2) * MAX_RANKS_PER_NODE;
self.barrier_max_size = 8 * (36 + 2) * 8
self.buffer_ptrs = self.create_shared_buffer(max_size, group=group)
self.tmp_result_buffer_ptrs = self.create_shared_buffer(
max_size, group=group
)
self.rank_data_base = torch.empty(
8 * 1024 * 1024, dtype=torch.uint8, device=self.device
)
self.barrier_in_ptrs = self.create_shared_buffer(
self.barrier_max_size, group=group
)
self.barrier_out_ptrs = self.create_shared_buffer(
self.barrier_max_size, group=group
)
self._ptr = ops.init_custom_ar(
rank,
world_size,
self.rank_data_base,
self.buffer_ptrs,
self.tmp_result_buffer_ptrs,
self.barrier_in_ptrs,
self.barrier_out_ptrs,
)
self.disabled = False
@staticmethod
......@@ -307,6 +334,11 @@ class CustomAllreduce:
return False
# for 4 or more non NVLink-capable GPUs, custom allreduce provides
# little performance improvement over NCCL.
if ops.use_vllm_custom_allreduce:
if self.world_size == 2 or self.full_nvlink:
return inp_size < self.max_size
return False
if self.world_size == 2:
return (
inp_size < self.max_size
......@@ -326,6 +358,7 @@ class CustomAllreduce:
inp: torch.Tensor,
*,
out: torch.Tensor = None,
registered: bool = False,
):
"""Performs an out-of-place all reduce.
......@@ -335,7 +368,15 @@ class CustomAllreduce:
"""
if out is None:
out = torch.empty_like(inp)
ops.all_reduce(self._ptr, inp, out)
if ops.use_vllm_custom_allreduce:
if registered:
ops.all_reduce(self._ptr, inp, out, 0, 0)
else:
ops.all_reduce(
self._ptr, inp, out, self.buffer_ptrs[self.rank], self.max_size
)
else:
ops.all_reduce(self._ptr, inp, out)
return out
def custom_all_reduce(self, input: torch.Tensor) -> Optional[torch.Tensor]:
......@@ -345,21 +386,25 @@ class CustomAllreduce:
return None
if self._IS_CAPTURING:
if torch.cuda.is_current_stream_capturing():
return self.all_reduce(input)
return self.all_reduce(input, registered=True)
else:
# If warm up, mimic the allocation pattern since custom
# allreduce is out-of-place.
return torch.empty_like(input)
else:
return self.all_reduce(input)
return self.all_reduce(input, registered=False)
def close(self):
if not self.disabled and self._ptr:
ops.dispose(self._ptr)
self.free_shared_buffer(self.buffer_ptrs)
self.free_shared_buffer(self.tmp_result_buffer_ptrs)
self.free_shared_buffer(self.barrier_in_ptrs)
self.free_shared_buffer(self.barrier_out_ptrs)
if ops.use_vllm_custom_allreduce:
self.free_shared_buffer(self.meta_ptrs)
self.free_shared_buffer(self.buffer_ptrs)
else:
self.free_shared_buffer(self.buffer_ptrs)
self.free_shared_buffer(self.tmp_result_buffer_ptrs)
self.free_shared_buffer(self.barrier_in_ptrs)
self.free_shared_buffer(self.barrier_out_ptrs)
self._ptr = 0
def __del__(self):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment