Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
23308a90
Unverified
Commit
23308a90
authored
Mar 10, 2025
by
Xiaoyu Zhang
Committed by
GitHub
Mar 10, 2025
Browse files
fix per_token_group_quant_fp8 illegal memory when num_groups % 16 != 0 (#4231)
parent
ac698850
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
88 additions
and
47 deletions
+88
-47
sgl-kernel/csrc/gemm/per_token_group_quant_fp8.cu
sgl-kernel/csrc/gemm/per_token_group_quant_fp8.cu
+86
-45
sgl-kernel/tests/test_per_token_group_quant_fp8.py
sgl-kernel/tests/test_per_token_group_quant_fp8.py
+2
-2
No files found.
sgl-kernel/csrc/gemm/per_token_group_quant_fp8.cu
View file @
23308a90
...
...
@@ -2,20 +2,23 @@
#include <c10/util/Float8_e4m3fn.h>
#include <cmath>
#include <flashinfer/vec_dtypes.cuh>
#include "utils.h"
using
FP8_TYPE
=
c10
::
Float8_e4m3fn
;
__device__
__forceinline__
float
GroupReduceMax
(
volatile
float
*
smem
,
const
int
tid
)
{
smem
[
tid
]
=
fmaxf
(
smem
[
tid
],
smem
[
tid
+
8
]);
if
(
tid
<
4
)
smem
[
tid
]
=
fmaxf
(
smem
[
tid
],
smem
[
tid
+
4
]);
if
(
tid
<
2
)
smem
[
tid
]
=
fmaxf
(
smem
[
tid
],
smem
[
tid
+
2
]);
if
(
tid
<
1
)
smem
[
tid
]
=
fmaxf
(
smem
[
tid
],
smem
[
tid
+
1
]);
return
smem
[
0
];
__device__
__forceinline__
float
GroupReduceMax
(
float
val
,
const
int
tid
)
{
unsigned
mask
=
0xffff
;
val
=
fmaxf
(
val
,
__shfl_xor_sync
(
mask
,
val
,
8
));
val
=
fmaxf
(
val
,
__shfl_xor_sync
(
mask
,
val
,
4
));
val
=
fmaxf
(
val
,
__shfl_xor_sync
(
mask
,
val
,
2
));
val
=
fmaxf
(
val
,
__shfl_xor_sync
(
mask
,
val
,
1
));
return
val
;
}
template
<
typename
T
>
template
<
typename
T
,
int
GROUPS_PER_BLOCK
=
16
>
__global__
void
per_token_group_quant_fp8_kernel
(
const
T
*
__restrict__
input
,
void
*
__restrict__
output_q
,
...
...
@@ -25,46 +28,53 @@ __global__ void per_token_group_quant_fp8_kernel(
const
float
eps
,
const
float
fp8_min
,
const
float
fp8_max
)
{
const
int
groups_per_block
=
16
;
const
int
block_group_id
=
blockIdx
.
x
*
groups_per_block
;
const
int
tid
=
threadIdx
.
x
;
const
int
local_group_id
=
tid
/
16
;
const
int
local_tid
=
tid
%
16
;
const
int
threads_per_group
=
16
;
const
int
local_group_id
=
threadIdx
.
x
/
threads_per_group
;
const
int
lane_id
=
threadIdx
.
x
%
threads_per_group
;
__shared__
float
s_absmax
[
16
][
17
];
const
int
block_group_id
=
blockIdx
.
x
*
GROUPS_PER_BLOCK
;
const
int
block_group_offset
=
(
block_group_id
+
local_group_id
)
*
group_size
;
float
local_absmax
=
eps
;
if
(
block_group_id
+
local_group_id
<
num_groups
)
{
const
T
*
group_input
=
input
+
(
block_group_id
+
local_group_id
)
*
group_size
;
FP8_TYPE
*
group_output
=
static_cast
<
FP8_TYPE
*>
(
output_q
)
+
(
block_group_id
+
local_group_id
)
*
group_size
;
float
*
scale_output
=
output_s
+
block_group_id
+
local_group_id
;
const
T
*
group_input
=
input
+
block_group_offset
;
FP8_TYPE
*
group_output
=
static_cast
<
FP8_TYPE
*>
(
output_q
)
+
block_group_offset
;
float
*
scale_output
=
output_s
+
(
block_group_id
+
local_group_id
);
constexpr
uint32_t
vec_size
=
16
/
sizeof
(
T
);
using
vec_t
=
flashinfer
::
vec_t
<
T
,
vec_size
>
;
const
int32_t
num_vec_elems
=
group_size
/
vec_size
;
for
(
int32_t
i
=
lane_id
;
i
<
num_vec_elems
;
i
+=
16
)
{
vec_t
input_vec
;
input_vec
.
cast_load
(
group_input
+
i
*
vec_size
);
for
(
int
i
=
local_tid
;
i
<
group_size
;
i
+=
16
)
{
float
val
=
static_cast
<
float
>
(
group_input
[
i
]);
#pragma unroll
for
(
uint32_t
j
=
0
;
j
<
vec_size
;
++
j
)
{
float
val
=
static_cast
<
float
>
(
input_vec
[
j
]);
float
abs_val
=
fabsf
(
val
);
local_absmax
=
fmaxf
(
local_absmax
,
abs_val
);
}
}
s_absmax
[
local_group_id
][
local_tid
]
=
local_absmax
;
__syncthreads
();
local_absmax
=
GroupReduceMax
(
local_absmax
,
lane_id
);
if
(
local_tid
<
8
)
{
GroupReduceMax
(
&
s_absmax
[
local_group_id
][
0
],
local_tid
);
}
__syncthreads
();
const
float
y_s
=
local_absmax
/
fp8_max
;
const
float
group_absmax
=
s_absmax
[
local_group_id
][
0
];
const
float
y_s
=
group_absmax
/
fp8_max
;
if
(
lane_id
==
0
)
{
*
scale_output
=
y_s
;
}
if
(
local_tid
==
0
)
{
*
scale_output
=
y_s
;
}
for
(
int32_t
i
=
lane_id
;
i
<
num_vec_elems
;
i
+=
16
)
{
vec_t
input_vec
;
input_vec
.
cast_load
(
group_input
+
i
*
vec_size
);
for
(
int
i
=
local_tid
;
i
<
group_size
;
i
+=
16
)
{
float
val
=
static_cast
<
float
>
(
group_input
[
i
]);
#pragma unroll
for
(
uint32_t
j
=
0
;
j
<
vec_size
;
++
j
)
{
float
val
=
static_cast
<
float
>
(
input_vec
[
j
]);
float
q_val
=
fminf
(
fmaxf
(
val
/
y_s
,
fp8_min
),
fp8_max
);
group_output
[
i
]
=
FP8_TYPE
(
q_val
);
group_output
[
i
*
vec_size
+
j
]
=
FP8_TYPE
(
q_val
);
}
}
}
...
...
@@ -85,21 +95,52 @@ void sgl_per_token_group_quant_fp8(
CHECK_EQ
(
input
.
numel
()
%
group_size
,
0
);
dim3
grid
((
num_groups
+
15
)
/
16
);
dim3
block
(
256
);
cudaStream_t
stream
=
at
::
cuda
::
getCurrentCUDAStream
();
constexpr
int
THREADS_PER_GROUP
=
16
;
int
groups_per_block
=
1
;
if
(
num_groups
%
16
==
0
)
{
groups_per_block
=
16
;
}
else
if
(
num_groups
%
8
==
0
)
{
groups_per_block
=
8
;
}
else
if
(
num_groups
%
4
==
0
)
{
groups_per_block
=
4
;
}
else
if
(
num_groups
%
2
==
0
)
{
groups_per_block
=
2
;
}
#define LAUNCH_KERNEL(T, GPB) \
do { \
constexpr int GROUPS_PER_BLOCK = GPB; \
dim3 grid((num_groups + GROUPS_PER_BLOCK - 1) / GROUPS_PER_BLOCK); \
dim3 block(GROUPS_PER_BLOCK* THREADS_PER_GROUP); \
per_token_group_quant_fp8_kernel<T, GROUPS_PER_BLOCK><<<grid, block, 0, stream>>>( \
static_cast<T*>(input.data_ptr()), \
output_q.data_ptr(), \
static_cast<float*>(output_s.data_ptr()), \
group_size, \
num_groups, \
(float)eps, \
(float)fp8_min, \
(float)fp8_max); \
} while (0)
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16
(
input
.
scalar_type
(),
scalar_t
,
[
&
]
{
per_token_group_quant_fp8_kernel
<
scalar_t
><<<
grid
,
block
,
0
,
stream
>>>
(
static_cast
<
scalar_t
*>
(
input
.
data_ptr
()),
output_q
.
data_ptr
(),
static_cast
<
float
*>
(
output_s
.
data_ptr
()),
group_size
,
num_groups
,
(
float
)
eps
,
(
float
)
fp8_min
,
(
float
)
fp8_max
);
if
(
groups_per_block
==
16
)
{
LAUNCH_KERNEL
(
scalar_t
,
16
);
}
else
if
(
groups_per_block
==
8
)
{
LAUNCH_KERNEL
(
scalar_t
,
8
);
}
else
if
(
groups_per_block
==
4
)
{
LAUNCH_KERNEL
(
scalar_t
,
4
);
}
else
if
(
groups_per_block
==
2
)
{
LAUNCH_KERNEL
(
scalar_t
,
2
);
}
else
{
LAUNCH_KERNEL
(
scalar_t
,
1
);
}
return
true
;
});
#undef LAUNCH_KERNEL
}
sgl-kernel/tests/test_per_token_group_quant_fp8.py
View file @
23308a90
...
...
@@ -149,9 +149,9 @@ def sglang_per_token_group_quant_fp8(
"batch_size, seq_len, group_size"
,
list
(
itertools
.
product
(
[
1
,
2
,
4
,
8
,
16
],
# batch_size
[
1
,
2
,
4
,
8
,
16
,
32
,
64
,
128
],
# batch_size
[
64
,
128
,
256
,
512
,
1024
,
2048
],
# seq_len
[
64
,
128
,
256
],
# group_size
[
16
,
32
,
64
,
128
,
256
],
# group_size
)
),
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment