Unverified Commit 22630ca2 authored by Jianan Ji's avatar Jianan Ji Committed by GitHub
Browse files

Support sliding window in triton backend (#6509)

parent d279d499
......@@ -72,6 +72,65 @@ def get_num_kv_splits_triton(
tl.store(num_kv_splits_ptr + i + offs_token, num_kv_splits, mask=mask_token)
def update_sliding_window_buffer(
window_kv_indptr,
req_to_token,
sliding_window_size,
seq_lens,
req_pool_indices,
bs,
device,
):
window_kv_lens = torch.minimum(
seq_lens,
torch.tensor(sliding_window_size + 1),
)
window_kv_indptr[1 : bs + 1] = torch.cumsum(window_kv_lens, dim=0)
window_kv_indptr = window_kv_indptr[: bs + 1]
window_kv_indices = torch.empty(
window_kv_indptr[-1], dtype=torch.int32, device=device
)
window_kv_start_idx = seq_lens - window_kv_lens
create_flashinfer_kv_indices_triton[(bs,)](
req_to_token,
req_pool_indices,
window_kv_lens,
window_kv_indptr,
window_kv_start_idx,
window_kv_indices,
req_to_token.stride(0),
)
return window_kv_indptr, window_kv_indices, window_kv_lens
def update_sliding_window_buffer_cuda_graph(
window_kv_indptr,
window_kv_indices,
req_to_token,
sliding_window_size,
seq_lens,
req_pool_indices,
bs,
):
window_kv_lens = torch.minimum(
seq_lens,
torch.tensor(sliding_window_size + 1),
)
window_kv_indptr[1 : bs + 1] = torch.cumsum(window_kv_lens, dim=0)
window_kv_indptr = window_kv_indptr[: bs + 1]
window_kv_start_idx = seq_lens - window_kv_lens
create_flashinfer_kv_indices_triton[(bs,)](
req_to_token,
req_pool_indices,
window_kv_lens,
window_kv_indptr,
window_kv_start_idx,
window_kv_indices,
req_to_token.stride(0),
)
return window_kv_indptr, window_kv_lens
@dataclass
class ForwardMetadata:
attn_logits: torch.Tensor
......@@ -83,6 +142,10 @@ class ForwardMetadata:
qo_indptr: torch.Tensor
custom_mask: torch.Tensor
mask_indptr: torch.Tensor
# Sliding window
window_kv_indptr: torch.Tensor
window_kv_indices: torch.Tensor
window_num_kv_splits: torch.Tensor
class TritonAttnBackend(AttentionBackend):
......@@ -109,6 +172,13 @@ class TritonAttnBackend(AttentionBackend):
max_bs = model_runner.req_to_token_pool.size
assert not (
model_runner.sliding_window_size is not None
and model_runner.model_config.is_encoder_decoder
), "Sliding window and cross attention are not supported together"
self.sliding_window_size = model_runner.sliding_window_size
# TODO(Jianan Ji): Make sure it behaves as expected when kv_indptr_buf is provided and sliding window is enabled
if kv_indptr_buf is None:
self.kv_indptr = torch.zeros(
(max_bs + 1,), dtype=torch.int32, device=model_runner.device
......@@ -116,6 +186,18 @@ class TritonAttnBackend(AttentionBackend):
else:
self.kv_indptr = kv_indptr_buf
# If sliding window is enabled, we might need two sets of buffers
# because of interleaved attention types (e.g. for Gemma3)
self.window_kv_indptr = None
if self.sliding_window_size is not None and self.sliding_window_size > 0:
if kv_indptr_buf is None:
self.window_kv_indptr = torch.zeros(
(max_bs + 1,), dtype=torch.int32, device=model_runner.device
)
else:
# When provided a buffer, create a clone for the second buffer
self.window_kv_indptr = torch.zeros_like(kv_indptr_buf)
self.req_to_token = model_runner.req_to_token_pool.req_to_token
if not self.skip_prefill:
......@@ -191,6 +273,9 @@ class TritonAttnBackend(AttentionBackend):
bs = forward_batch.batch_size
kv_indptr = self.kv_indptr
window_kv_indptr = self.window_kv_indptr
window_kv_indices = None
window_num_kv_splits = None
spec_info = forward_batch.spec_info
if forward_batch.forward_mode.is_decode_or_idle():
......@@ -209,6 +294,26 @@ class TritonAttnBackend(AttentionBackend):
kv_indices,
self.req_to_token.stride(0),
)
# Sliding window
if (
self.sliding_window_size is not None
and self.sliding_window_size > 0
):
window_kv_indptr, window_kv_indices, window_kv_lens = (
update_sliding_window_buffer(
self.window_kv_indptr,
self.req_to_token,
self.sliding_window_size,
forward_batch.seq_lens,
forward_batch.req_pool_indices,
bs,
self.device,
)
)
window_num_kv_splits = torch.empty(
(bs,), dtype=torch.int32, device=self.device
)
self.get_num_kv_splits(window_num_kv_splits, window_kv_lens)
else:
kv_indptr, kv_indices = spec_info.kv_indptr, spec_info.kv_indices
bs = kv_indptr.shape[0] - 1
......@@ -224,7 +329,6 @@ class TritonAttnBackend(AttentionBackend):
device=self.device,
)
num_kv_splits = torch.empty((bs,), dtype=torch.int32, device=self.device)
self.get_num_kv_splits(num_kv_splits, forward_batch.seq_lens)
qo_indptr = None
......@@ -232,6 +336,7 @@ class TritonAttnBackend(AttentionBackend):
mask_indptr = None
max_extend_len = None
elif forward_batch.forward_mode.is_target_verify():
# TODO: Support sliding window in spec inference
bs = len(forward_batch.req_pool_indices)
qo_indptr = torch.arange(
0,
......@@ -303,6 +408,17 @@ class TritonAttnBackend(AttentionBackend):
kv_indices,
self.req_to_token.stride(0),
)
# Sliding window
if self.sliding_window_size is not None and self.sliding_window_size > 0:
window_kv_indptr, window_kv_indices, _ = update_sliding_window_buffer(
self.window_kv_indptr,
self.req_to_token,
self.sliding_window_size,
forward_batch.extend_prefix_lens,
forward_batch.req_pool_indices,
bs,
self.device,
)
qo_indptr = self.qo_indptr
qo_indptr[1 : bs + 1] = torch.cumsum(forward_batch.extend_seq_lens, dim=0)
......@@ -324,6 +440,9 @@ class TritonAttnBackend(AttentionBackend):
qo_indptr,
custom_mask,
mask_indptr,
window_kv_indptr,
window_kv_indices,
window_num_kv_splits,
)
def init_cuda_graph_state(
......@@ -358,6 +477,20 @@ class TritonAttnBackend(AttentionBackend):
device=self.device,
)
if self.sliding_window_size is not None and self.sliding_window_size > 0:
if kv_indices_buf is None:
self.cuda_graph_window_kv_indices = torch.zeros(
(max_bs * self.sliding_window_size),
dtype=torch.int32,
device=self.device,
)
else:
self.cuda_graph_window_kv_indices = torch.zeros_like(kv_indices_buf)
self.cuda_graph_window_num_kv_splits = torch.full(
(max_bs,), self.max_kv_splits, dtype=torch.int32, device=self.device
)
def init_forward_metadata_capture_cuda_graph(
self,
bs: int,
......@@ -369,6 +502,9 @@ class TritonAttnBackend(AttentionBackend):
spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
):
assert encoder_lens is None, "Not supported"
window_kv_indptr = self.window_kv_indptr
window_kv_indices = None
window_num_kv_splits = None
if forward_mode.is_decode_or_idle():
if spec_info is None:
......@@ -385,6 +521,21 @@ class TritonAttnBackend(AttentionBackend):
kv_indices,
self.req_to_token.stride(0),
)
if (
self.sliding_window_size is not None
and self.sliding_window_size > 0
):
window_kv_indices = self.cuda_graph_window_kv_indices
window_num_kv_splits = self.cuda_graph_window_num_kv_splits
window_kv_indptr, _ = update_sliding_window_buffer_cuda_graph(
self.window_kv_indptr,
window_kv_indices,
self.req_to_token,
self.sliding_window_size,
seq_lens[:bs],
req_pool_indices,
bs,
)
else:
kv_indptr, kv_indices = spec_info.kv_indptr, spec_info.kv_indices
......@@ -468,6 +619,9 @@ class TritonAttnBackend(AttentionBackend):
qo_indptr,
custom_mask,
mask_indptr,
window_kv_indptr,
window_kv_indices,
window_num_kv_splits,
)
def init_forward_metadata_replay_cuda_graph(
......@@ -500,11 +654,31 @@ class TritonAttnBackend(AttentionBackend):
self.req_to_token.stride(0),
)
num_token = bs
if (
self.sliding_window_size is not None
and self.sliding_window_size > 0
):
window_num_kv_splits = self.cuda_graph_window_num_kv_splits
window_kv_indices = self.cuda_graph_window_kv_indices
_, window_kv_lens = update_sliding_window_buffer_cuda_graph(
self.window_kv_indptr,
window_kv_indices,
self.req_to_token,
self.sliding_window_size,
seq_lens[:bs],
req_pool_indices[:bs],
bs,
)
self.get_num_kv_splits(
window_num_kv_splits[:num_token], window_kv_lens[:bs]
)
else:
kv_indptr[: spec_info.kv_indptr.shape[0]] = spec_info.kv_indptr
kv_indices[: spec_info.kv_indices.shape[0]] = spec_info.kv_indices
num_token = spec_info.kv_indptr.shape[0] - 1
self.get_num_kv_splits(num_kv_splits[:num_token], seq_lens[:bs])
elif forward_mode.is_target_verify():
# Update qo_indptr, kv_indptr, kv_indices, custom_mask, mask_indptr
bs = len(req_pool_indices)
......@@ -582,6 +756,17 @@ class TritonAttnBackend(AttentionBackend):
if layer.attn_type == AttentionType.ENCODER_ONLY:
causal = False
if layer.sliding_window_size is not None and layer.sliding_window_size > -1:
sliding_window_size = (
layer.sliding_window_size
) # Needed for sliding window mask
kv_indptr = self.forward_metadata.window_kv_indptr
kv_indices = self.forward_metadata.window_kv_indices
else:
sliding_window_size = -1
kv_indptr = self.forward_metadata.kv_indptr
kv_indices = self.forward_metadata.kv_indices
self.extend_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
k.contiguous(),
......@@ -590,14 +775,15 @@ class TritonAttnBackend(AttentionBackend):
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
self.forward_metadata.qo_indptr,
self.forward_metadata.kv_indptr,
self.forward_metadata.kv_indices,
kv_indptr,
kv_indices,
self.forward_metadata.custom_mask,
causal,
self.forward_metadata.mask_indptr,
self.forward_metadata.max_extend_len,
layer.scaling,
layer.logit_cap,
sliding_window_size,
)
return o
......@@ -625,13 +811,20 @@ class TritonAttnBackend(AttentionBackend):
layer, forward_batch.out_cache_loc, k, v
)
if layer.sliding_window_size is not None and layer.sliding_window_size > -1:
kv_indptr = self.forward_metadata.window_kv_indptr
kv_indices = self.forward_metadata.window_kv_indices
else:
kv_indptr = self.forward_metadata.kv_indptr
kv_indices = self.forward_metadata.kv_indices
self.decode_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
self.forward_metadata.kv_indptr,
self.forward_metadata.kv_indices,
kv_indptr,
kv_indices,
self.forward_metadata.attn_logits,
self.forward_metadata.attn_lse,
self.forward_metadata.num_kv_splits,
......
......@@ -65,6 +65,7 @@ def _fwd_kernel(
stride_buf_kh,
stride_buf_vbs,
stride_buf_vh,
SLIDING_WINDOW_SIZE: tl.constexpr,
logit_cap: tl.constexpr,
Lq: tl.constexpr,
Lv: tl.constexpr,
......@@ -163,6 +164,7 @@ def _fwd_kernel(
if logit_cap > 0:
qk = logit_cap * tanh(qk / logit_cap)
final_mask = mask_m[:, None] & mask_n[None, :]
if USE_CUSTOM_MASK and not SKIP_PREFIX_CUSTOM_MASK:
custom_mask = tl.load(
mask_ptr
......@@ -173,10 +175,14 @@ def _fwd_kernel(
mask=(mask_m[:, None] & mask_n[None, :]),
other=0,
)
custom_mask &= mask_m[:, None] & mask_n[None, :]
qk = tl.where(custom_mask, qk, float("-inf"))
else:
qk = tl.where(mask_m[:, None] & mask_n[None, :], qk, float("-inf"))
final_mask &= custom_mask
if SLIDING_WINDOW_SIZE > 0:
# Add mask where q_id <= kv_id + sliding_window_size
window_mask = (cur_block_m * BLOCK_M + offs_m[:, None]) <= (
start_n + offs_n[None, :] + SLIDING_WINDOW_SIZE
)
final_mask &= window_mask
qk = tl.where(final_mask, qk, float("-inf"))
n_e_max = tl.maximum(tl.max(qk, 1), e_max)
re_scale = tl.exp(e_max - n_e_max)
......@@ -314,6 +320,7 @@ def extend_attention_fwd(
sm_scale=None,
logit_cap=0.0,
skip_prefix_custom_mask=True,
sliding_window_size=-1,
):
"""
q_extend, k_extend, v_extend, o_extend: contiguous tensors
......@@ -412,6 +419,7 @@ def extend_attention_fwd(
k_buffer.stride(1),
v_buffer.stride(0),
v_buffer.stride(1),
SLIDING_WINDOW_SIZE=sliding_window_size,
logit_cap=logit_cap,
BLOCK_DMODEL=BLOCK_DMODEL,
BLOCK_DPE=BLOCK_DPE,
......
......@@ -1025,10 +1025,6 @@ class ModelRunner:
return AiterAttnBackend(self)
elif self.server_args.attention_backend == "triton":
assert self.sliding_window_size is None, (
"Window attention is not supported in the triton attention backend. "
"Please use `--attention-backend flashinfer`."
)
assert not self.model_config.is_encoder_decoder, (
"Cross attention is not supported in the triton attention backend. "
"Please use `--attention-backend flashinfer`."
......
......@@ -277,6 +277,13 @@ class Gemma3Attention(nn.Module):
k = k.permute(0, 2, 1, 3)
attn_output = self.attn(q, k, v, forward_batch=forward_batch)
# Compatible with triton backend which returns [1, s, h, head_dim]
if attn_output.dim() == 4 and attn_output.shape[0] == 1:
attn_output = attn_output.squeeze(0)
attn_output = attn_output.flatten(-2, -1)
# [s, h * head_dim]
output, _ = self.o_proj(attn_output)
return output
......
......@@ -78,6 +78,7 @@ suites = {
TestFile("test_triton_attention_kernels.py", 4),
TestFile("test_triton_attention_backend.py", 134),
TestFile("test_triton_moe_channel_fp8_kernel.py", 25),
TestFile("test_triton_sliding_window.py", 250),
TestFile("test_update_weights_from_disk.py", 114),
TestFile("test_update_weights_from_tensor.py", 48),
TestFile("test_vertex_endpoint.py", 31),
......
import time
import unittest
from types import SimpleNamespace
import requests
from sglang.srt.utils import kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
popen_launch_server,
)
class TestSlidingWindowAttentionTriton(CustomTestCase):
"""Test sliding window attention functionality with triton backend."""
@classmethod
def setUpClass(cls):
"""Set up the test server with Gemma3 model and triton backend."""
# Gemma3 model supports sliding window attention
cls.model = "google/gemma-3-4b-it"
cls.base_url = DEFAULT_URL_FOR_TEST
cls.common_args = [
"--trust-remote-code",
"--attention-backend",
"triton",
"--context-length",
"8192",
"--random-seed",
"42",
]
cls.short_context_prompt = "The capital of France is"
# Test prompt longer than window size
cls.long_context_prompt = (
"""
Once upon a time, there was a mountain. In the mountain, there was a temple. In the temple, there was an old monk telling a story. The story was:
"""
* 100
)
cls.long_context_prompt += "\nNow, summarize the story in one sentence:"
@classmethod
def tearDownClass(cls):
pass
def _test_mmlu(self):
args = SimpleNamespace(
base_url=self.base_url,
model=self.model,
eval_name="mmlu",
num_examples=64,
num_threads=32,
)
metrics = run_eval(args)
print(f"MMLU metrics with sliding window: {metrics}")
self.assertGreaterEqual(metrics["score"], 0.64)
def _test_short_context_generation(self):
response = requests.post(
self.base_url + "/generate",
json={
"text": self.short_context_prompt,
"sampling_params": {
"temperature": 0,
"max_new_tokens": 256,
},
},
)
self.assertEqual(response.status_code, 200)
result = response.json()
self.assertIn("paris", result["text"].lower())
print(f"Short context generation result: {result['text']}")
def _test_long_context_generation(self):
response = requests.post(
self.base_url + "/generate",
json={
"text": self.long_context_prompt,
"sampling_params": {
"temperature": 0,
"max_new_tokens": 256,
},
},
)
self.assertEqual(response.status_code, 200)
result = response.json()
self.assertGreater(len(result["text"].strip()), 0)
print(f"Long context generation result: {result['text'][:100]}...")
def test_no_cuda_graph(self):
self.no_cuda_graph_process = popen_launch_server(
self.model,
self.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=self.common_args + ["--disable-cuda-graph"],
)
self._test_short_context_generation()
self._test_long_context_generation()
self._test_mmlu()
kill_process_tree(self.no_cuda_graph_process.pid)
time.sleep(5)
def test_cuda_graph(self):
self.cuda_graph_process = popen_launch_server(
self.model,
self.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=self.common_args,
)
self._test_short_context_generation()
self._test_long_context_generation()
self._test_mmlu()
kill_process_tree(self.cuda_graph_process.pid)
time.sleep(5)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment