Unverified Commit 21463e32 authored by lukec's avatar lukec Committed by GitHub
Browse files

Expert Parallelism (EP) Support for DeepSeek V3/R1 (#3602)


Co-authored-by: default avatarlaixin <xielx@shanghaitech.edu.cn>
Co-authored-by: default avatarHandH1998 <1335248067@qq.com>
Co-authored-by: default avatarlaixin <q865809639@gmail.com>
parent 3dc9ff3c
import logging
from typing import Optional
from typing import List, Optional
import torch
import triton
import triton.language as tl
from sglang.srt.layers.quantization.fp8_kernel import per_token_group_quant_fp8
_is_cuda = torch.cuda.is_available() and torch.version.cuda
if _is_cuda:
from sglang.srt.layers.quantization.fp8_kernel import (
sglang_per_token_group_quant_fp8,
)
logger = logging.getLogger(__name__)
......@@ -218,12 +225,19 @@ def grouped_gemm_triton_kernel(
seg_indptr,
weight_indices,
m_num_tiles_indptr,
use_fp8_w8a8,
scale_a,
scale_b,
use_fp8_w8a8: tl.constexpr,
group_n: tl.constexpr,
group_k: tl.constexpr,
a_stride_0: tl.constexpr,
b_stride_0: tl.constexpr,
b_stride_1: tl.constexpr,
as_stride_0: tl.constexpr,
as_stride_1: tl.constexpr,
bs_stride_0: tl.constexpr,
bs_stride_2: tl.constexpr,
bs_stride_1: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
......@@ -260,6 +274,12 @@ def grouped_gemm_triton_kernel(
+ (n_range_start + offs_bn[:, None]) * b_stride_1
+ offs_k[None, :]
)
if group_k > 0 and group_n > 0:
a_scale_ptrs = scale_a + (m_range_start + offs_am[:, None]) * as_stride_0
offs_bsn = (n_range_start + offs_bn) // group_n
b_scale_ptrs = scale_b + (expert_id * bs_stride_0) + offs_bsn * bs_stride_1
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
a_tile = tl.load(
......@@ -268,14 +288,23 @@ def grouped_gemm_triton_kernel(
b_tile = tl.load(
b_ptr, mask=offs_k[None, :] < (K - k * BLOCK_SIZE_K), other=0.0
)
accumulator = tl.dot(a_tile, b_tile.T, accumulator)
if group_k > 0 and group_n > 0:
k_start = k * BLOCK_SIZE_K
offs_ks = k_start // group_k
a_scale = tl.load(a_scale_ptrs + offs_ks * as_stride_1)
b_scale = tl.load(b_scale_ptrs + offs_ks * bs_stride_2)
accumulator += tl.dot(a_tile, b_tile.T) * a_scale * b_scale[None, :]
else:
accumulator = tl.dot(a_tile, b_tile.T, accumulator)
a_ptr += BLOCK_SIZE_K
b_ptr += BLOCK_SIZE_K
if use_fp8_w8a8:
if use_fp8_w8a8 and not (group_k > 0 and group_n > 0):
scale_a_value = tl.load(scale_a + expert_id)
scale_b_value = tl.load(scale_b + expert_id)
accumulator *= scale_a_value * scale_b_value
c_tile = accumulator.to(c_dtype)
offs_cm = m_range_start + tl.arange(0, BLOCK_SIZE_M)
......@@ -307,14 +336,29 @@ def grouped_gemm_triton(
use_fp8_w8a8: bool = False,
scale_a: torch.Tensor = None,
scale_b: torch.Tensor = None,
block_shape: Optional[List[int]] = None,
):
assert weight_column_major == True # TODO: more
if use_fp8_w8a8:
if use_fp8_w8a8 and block_shape is None:
assert scale_a is not None and scale_b is not None
if block_shape is not None:
assert len(block_shape) == 2
block_n, block_k = block_shape[0], block_shape[1]
if _is_cuda:
a, scale_a = sglang_per_token_group_quant_fp8(a, block_k)
else:
a, scale_a = per_token_group_quant_fp8(a, block_k)
assert triton.cdiv(a.shape[-1], block_k) == scale_a.shape[-1]
assert triton.cdiv(b.shape[-2], block_n) == scale_b.shape[-2]
assert triton.cdiv(b.shape[-1], block_k) == scale_b.shape[-1]
# TODO: adjust config or tune kernel
# Reduce block size to prevent L40 shared memory overflow.
config = {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
}
......@@ -338,12 +382,19 @@ def grouped_gemm_triton(
seg_indptr,
weight_indices,
m_num_tiles_indptr,
use_fp8_w8a8,
scale_a,
scale_b,
use_fp8_w8a8,
0 if block_shape is None else block_shape[0],
0 if block_shape is None else block_shape[1],
a.stride(0),
b.stride(0),
b.stride(1),
scale_a.stride(0) if scale_a is not None and scale_a.ndim == 2 else 0,
scale_a.stride(1) if scale_a is not None and scale_a.ndim == 2 else 0,
scale_b.stride(0) if scale_b is not None and scale_b.ndim >= 2 else 0,
scale_b.stride(2) if scale_b is not None and scale_b.ndim == 3 else 0,
scale_b.stride(1) if scale_b is not None and scale_b.ndim >= 2 else 0,
**config,
)
return c
......@@ -17,6 +17,7 @@ from sglang.srt.layers.moe.ep_moe.kernels import (
run_moe_ep_preproess,
silu_and_mul_triton_kernel,
)
from sglang.srt.layers.moe.fused_moe_triton import FusedMoeWeightScaleSupported
from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoEMethodBase
from sglang.srt.layers.moe.topk import select_experts
from sglang.srt.layers.quantization.base_config import (
......@@ -61,6 +62,7 @@ class GroupedGemmRunner(torch.nn.Module):
use_fp8_w8a8: bool = False,
scale_a: torch.Tensor = None,
scale_b: torch.Tensor = None,
block_shape: Optional[List[int]] = None,
):
if self.use_flashinfer:
# TODO: flashinfer
......@@ -87,6 +89,7 @@ class GroupedGemmRunner(torch.nn.Module):
use_fp8_w8a8,
scale_a,
scale_b,
block_shape=block_shape,
)
return c
......@@ -147,12 +150,20 @@ class EPMoE(torch.nn.Module):
if quant_config is None:
self.quant_method: Optional[QuantizeMethodBase] = UnquantizedEPMoEMethod()
self.use_fp8_w8a8 = False
self.use_block_quant = False
self.block_shape = None
self.activation_scheme = None
else:
self.quant_method: Optional[QuantizeMethodBase] = Fp8EPMoEMethod(
quant_config
)
self.use_fp8_w8a8 = True
self.use_block_quant = getattr(self.quant_method, "block_quant", False)
self.block_shape = (
self.quant_method.quant_config.weight_block_size
if self.use_block_quant
else None
)
self.fp8_dtype = torch.float8_e4m3fn
self.activation_scheme = quant_config.activation_scheme
......@@ -173,7 +184,8 @@ class EPMoE(torch.nn.Module):
if self.grouped_gemm_runner is None:
self.grouped_gemm_runner = GroupedGemmRunner(
hidden_states.device, use_flashinfer=False # TODO: use flashinfer
hidden_states.device,
use_flashinfer=False, # TODO: use flashinfer
)
topk_weights, topk_ids = select_experts(
......@@ -195,9 +207,13 @@ class EPMoE(torch.nn.Module):
gateup_input = torch.empty(
(int(hidden_states.shape[0] * self.top_k), hidden_states.shape[1]),
device=hidden_states.device,
dtype=self.fp8_dtype if self.use_fp8_w8a8 else hidden_states.dtype,
dtype=(
self.fp8_dtype
if (self.use_fp8_w8a8 and not self.use_block_quant)
else hidden_states.dtype
),
)
if self.activation_scheme == "dynamic":
if self.activation_scheme == "dynamic" and not self.use_block_quant:
max_value = (
torch.max(hidden_states)
.repeat(self.num_experts_per_partition)
......@@ -243,7 +259,12 @@ class EPMoE(torch.nn.Module):
weight_indices=weight_indices_cur_rank,
use_fp8_w8a8=self.use_fp8_w8a8,
scale_a=self.w13_input_scale,
scale_b=self.w13_weight_scale,
scale_b=(
self.w13_weight_scale_inv
if self.use_block_quant
else self.w13_weight_scale
),
block_shape=self.block_shape,
)
# Act
......@@ -251,9 +272,13 @@ class EPMoE(torch.nn.Module):
gateup_output.shape[0],
gateup_output.shape[1] // 2,
device=gateup_output.device,
dtype=self.fp8_dtype if self.use_fp8_w8a8 else hidden_states.dtype,
dtype=(
self.fp8_dtype
if (self.use_fp8_w8a8 and not self.use_block_quant)
else hidden_states.dtype
),
)
if self.w2_input_scale is None:
if self.w2_input_scale is None and not self.use_block_quant:
self.w2_input_scale = torch.ones(
self.num_experts_per_partition,
dtype=torch.float32,
......@@ -291,7 +316,12 @@ class EPMoE(torch.nn.Module):
weight_indices=weight_indices_cur_rank,
use_fp8_w8a8=self.use_fp8_w8a8,
scale_a=self.w2_input_scale,
scale_b=self.w2_weight_scale,
scale_b=(
self.w2_weight_scale_inv
if self.use_block_quant
else self.w2_weight_scale
),
block_shape=self.block_shape,
)
# PostReorder
......@@ -358,7 +388,11 @@ class EPMoE(torch.nn.Module):
# Special case for fp8 scales.
if "scale" in weight_name:
self._load_fp8_scale(
param.data, loaded_weight, weight_name, shard_id, expert_id
param.data,
loaded_weight,
weight_name,
shard_id,
expert_id,
)
return
......@@ -395,18 +429,33 @@ class EPMoE(torch.nn.Module):
param_data[expert_id] = loaded_weight
# Weight scales
elif "weight_scale" in weight_name:
if self.use_block_quant:
block_n, block_k = self.block_shape[0], self.block_shape[1]
if shard_id == "w1":
param_data[expert_id][
: (self.intermediate_size + block_n - 1) // block_n, :
] = loaded_weight
elif shard_id == "w3":
param_data[expert_id][
(self.intermediate_size + block_n - 1) // block_n :, :
] = loaded_weight
else: # w2
param_data[expert_id] = loaded_weight
# If we are in merged column case (gate_up_proj)
if shard_id in ("w1", "w3"):
# We have to keep the weight scales of w1 and w3 because
# we need to re-quantize w1/w3 weights after weight loading.
idx = 0 if shard_id == "w1" else 1
param_data[expert_id][idx] = loaded_weight
# If we are in the row parallel case (down_proj)
else:
param_data[expert_id] = loaded_weight
if shard_id in ("w1", "w3"):
# We have to keep the weight scales of w1 and w3 because
# we need to re-quantize w1/w3 weights after weight loading.
idx = 0 if shard_id == "w1" else 1
param_data[expert_id][idx] = loaded_weight
# If we are in the row parallel case (down_proj)
else:
param_data[expert_id] = loaded_weight
class UnquantizedEPMoEMethod(FusedMoEMethodBase, CustomOp):
def create_weights(
self,
layer: torch.nn.Module,
......@@ -498,6 +547,7 @@ class Fp8EPMoEMethod(Fp8MoEMethod):
def __init__(self, quant_config: Fp8Config):
self.quant_config = quant_config
self.block_quant = self.quant_config.weight_block_size is not None
def create_weights(
self,
......@@ -512,6 +562,29 @@ class Fp8EPMoEMethod(Fp8MoEMethod):
if self.quant_config.is_checkpoint_fp8_serialized:
params_dtype = torch.float8_e4m3fn
tp_size = get_tensor_model_parallel_world_size()
if self.block_quant:
block_n, block_k = (
self.quant_config.weight_block_size[0],
self.quant_config.weight_block_size[1],
)
# NOTE(HandH1998): To ensure proper alignment of the block-wise quantization scales, the output_size of the weights for both the gate and up layers must be divisible by block_n.
# Required by collum parallel or enabling merged weights
if intermediate_size % block_n != 0:
raise ValueError(
f"The output_size of gate's and up's weight = "
f"{intermediate_size} is not divisible by "
f"weight quantization block_n = {block_n}."
)
if tp_size > 1:
# Required by row parallel
if intermediate_size % block_k != 0:
raise ValueError(
f"The input_size of down's weight = "
f"{intermediate_size} is not divisible by "
f"weight quantization block_k = {block_k}."
)
# WEIGHTS
w13_weight = torch.nn.Parameter(
torch.empty(
......@@ -538,21 +611,49 @@ class Fp8EPMoEMethod(Fp8MoEMethod):
set_weight_attrs(w2_weight, extra_weight_attrs)
# WEIGHT_SCALES
# Allocate 2 scales for w1 and w3 respectively.
w13_weight_scale = torch.nn.Parameter(
torch.ones(num_experts_per_partition, 2, dtype=torch.float32),
requires_grad=False,
)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
if self.block_quant:
w13_weight_scale = torch.nn.Parameter(
torch.ones(
num_experts_per_partition,
2 * ((intermediate_size + block_n - 1) // block_n),
(hidden_size + block_k - 1) // block_k,
dtype=torch.float32,
),
requires_grad=False,
)
w2_weight_scale = torch.nn.Parameter(
torch.ones(
num_experts_per_partition,
(hidden_size + block_n - 1) // block_n,
(intermediate_size + block_k - 1) // block_k,
dtype=torch.float32,
),
requires_grad=False,
)
layer.register_parameter("w13_weight_scale_inv", w13_weight_scale)
layer.register_parameter("w2_weight_scale_inv", w2_weight_scale)
assert self.quant_config.activation_scheme == "dynamic"
else:
# WEIGHT_SCALES
# Allocate 2 scales for w1 and w3 respectively.
w13_weight_scale = torch.nn.Parameter(
torch.ones(num_experts_per_partition, 2, dtype=torch.float32),
requires_grad=False,
)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
w2_weight_scale = torch.nn.Parameter(
torch.ones(num_experts_per_partition, dtype=torch.float32),
requires_grad=False,
)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
w2_weight_scale = torch.nn.Parameter(
torch.ones(num_experts_per_partition, dtype=torch.float32),
requires_grad=False,
)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
# Add the quantization method used (per tensor/grouped/channel)
# to ensure the weight scales are loaded in properly
extra_weight_attrs.update({"quant_method": "tensor"})
extra_weight_attrs.update(
{"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
if self.block_quant
else {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
)
# If loading fp8 checkpoint, pass the weight loaders.
# If loading an fp16 checkpoint, do not (we will quantize in
# process_weights_after_loading()
......
import itertools
import random
import unittest
from typing import Any, Callable, Dict, List, Optional, Tuple
import torch
from sglang.srt.layers.moe.ep_moe.kernels import (
grouped_gemm_triton,
post_reorder_triton_kernel,
pre_reorder_triton_kernel,
run_moe_ep_preproess,
silu_and_mul_triton_kernel,
)
from sglang.srt.layers.moe.topk import select_experts
# For test
def ep_moe(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
# ep config
num_experts: int = 256,
fp8_dtype: torch.types = torch.float8_e4m3fn,
num_experts_per_partition: int = 128,
start_expert_id: int = 0,
end_expert_id: int = 127,
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
use_fp8_w8a8: bool = False,
w1_scale_inv: Optional[torch.Tensor] = None,
w2_scale_inv: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None,
):
use_blockwise_fp8 = block_shape is not None
topk_weights, topk_ids = select_experts(
hidden_states=hidden_states,
router_logits=router_logits,
top_k=top_k,
use_grouped_topk=use_grouped_topk,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
# correction_bias=correction_bias, #skip this in test
custom_routing_function=custom_routing_function,
)
reorder_topk_ids, src2dst, seg_indptr = run_moe_ep_preproess(topk_ids, num_experts)
gateup_input = torch.empty(
(int(hidden_states.shape[0] * top_k), hidden_states.shape[1]),
device=hidden_states.device,
dtype=(
fp8_dtype
if (use_fp8_w8a8 and not use_blockwise_fp8)
else hidden_states.dtype
),
)
if use_fp8_w8a8 and not use_blockwise_fp8:
max_value = (
torch.max(hidden_states).repeat(num_experts_per_partition).to(torch.float32)
)
w1_input_scale = max_value / torch.finfo(fp8_dtype).max
else:
w1_input_scale = None
# PreReorder
pre_reorder_triton_kernel[(hidden_states.shape[0],)](
hidden_states,
gateup_input,
src2dst,
topk_ids,
w1_input_scale,
start_expert_id,
end_expert_id,
top_k,
hidden_states.shape[1],
BLOCK_SIZE=512,
)
seg_indptr_cur_rank = seg_indptr[start_expert_id : end_expert_id + 2]
weight_indices_cur_rank = torch.arange(
0,
num_experts_per_partition,
device=hidden_states.device,
dtype=torch.int64,
)
# GroupGemm-0
gateup_output = torch.empty(
gateup_input.shape[0],
w1.shape[1],
device=hidden_states.device,
dtype=hidden_states.dtype,
)
gateup_output = grouped_gemm_triton(
a=gateup_input,
b=w1,
c=gateup_output,
batch_size=num_experts_per_partition,
weight_column_major=True,
seg_indptr=seg_indptr_cur_rank,
weight_indices=weight_indices_cur_rank,
use_fp8_w8a8=use_fp8_w8a8,
scale_a=w1_input_scale,
scale_b=w1_scale_inv,
block_shape=block_shape,
)
# Act
down_input = torch.empty(
gateup_output.shape[0],
gateup_output.shape[1] // 2,
device=gateup_output.device,
dtype=(
fp8_dtype
if (use_fp8_w8a8 and not use_blockwise_fp8)
else hidden_states.dtype
),
)
if use_fp8_w8a8 and not use_blockwise_fp8:
w2_input_scale = torch.ones(
num_experts_per_partition,
dtype=torch.float32,
device=hidden_states.device,
)
else:
w2_input_scale = None
silu_and_mul_triton_kernel[(gateup_output.shape[0],)](
gateup_output,
down_input,
gateup_output.shape[1],
reorder_topk_ids,
w2_input_scale,
start_expert_id,
end_expert_id,
BLOCK_SIZE=512,
)
# GroupGemm-1
down_output = torch.empty(
down_input.shape[0],
w2.shape[1],
device=hidden_states.device,
dtype=hidden_states.dtype,
)
down_output = grouped_gemm_triton(
a=down_input,
b=w2,
c=down_output,
batch_size=num_experts_per_partition,
weight_column_major=True,
seg_indptr=seg_indptr_cur_rank,
weight_indices=weight_indices_cur_rank,
use_fp8_w8a8=use_fp8_w8a8,
scale_a=w2_input_scale,
scale_b=w2_scale_inv,
block_shape=block_shape,
)
# PostReorder
output = torch.empty_like(hidden_states)
post_reorder_triton_kernel[(hidden_states.size(0),)](
down_output,
output,
src2dst,
topk_ids,
topk_weights,
start_expert_id,
end_expert_id,
top_k,
hidden_states.size(1),
BLOCK_SIZE=512,
)
return output
# test util
def block_dequant(
x_q_block: torch.Tensor,
x_s: torch.Tensor,
block_size: List[int],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""This function converts block-wise quantization to tensor-wise quantization.
The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
and the block size.
The outputs are tensor-wise quantization tensor and tensor-wise quantization scale.
Note only float8 is supported for now.
"""
# process 3D tensor
if x_q_block.dim() == 3:
batch_size = x_q_block.size(0)
return torch.stack(
[block_dequant(x_q_block[b], x_s[b], block_size) for b in range(batch_size)]
)
block_n, block_k = block_size[0], block_size[1]
n, k = x_q_block.shape
n_tiles = (n + block_n - 1) // block_n
k_tiles = (k + block_k - 1) // block_k
assert n_tiles == x_s.shape[0]
assert k_tiles == x_s.shape[1]
x_dq_block = x_q_block.to(torch.float32)
x_dq_block_tiles = [
[
x_dq_block[
j * block_n : min((j + 1) * block_n, n),
i * block_k : min((i + 1) * block_k, k),
]
for i in range(k_tiles)
]
for j in range(n_tiles)
]
for i in range(k_tiles):
for j in range(n_tiles):
x_dq_block_tiles[j][i][:, :] = x_dq_block_tiles[j][i] * x_s[j][i]
return x_dq_block
class TestW8A8BlockFP8EPMoE(unittest.TestCase):
DTYPES = [torch.half, torch.bfloat16]
M = [1, 222, 1024, 2048]
N = [128, 1024, 2048]
K = [256, 4096, 5120]
E = [8, 16]
ep_size = [2, 4]
TOP_KS = [2, 4]
BLOCK_SIZE = [[128, 128]]
SEEDS = [0]
@classmethod
def setUpClass(cls):
if not torch.cuda.is_available():
raise unittest.SkipTest("CUDA is not available")
torch.set_default_device("cuda")
def _w8a8_block_fp8_ep_moe(
self, M, N, K, E, ep_size, topk, block_size, dtype, seed
):
torch.manual_seed(seed)
random.seed(seed)
# NOTE(HandH1998): to avoid overflow when out_dtype = torch.half
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
a = torch.randn((M, K), dtype=dtype) / 10
w1_fp32 = (torch.rand((E, 2 * N, K), dtype=dtype) - 0.5) * 2 * fp8_max
w1 = w1_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
w2_fp32 = (torch.rand((E, K, N), dtype=dtype) - 0.5) * 2 * fp8_max
w2 = w2_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
block_n, block_k = block_size[0], block_size[1]
n_tiles_w1 = (2 * N + block_n - 1) // block_n
n_tiles_w2 = (K + block_n - 1) // block_n
k_tiles_w1 = (K + block_k - 1) // block_k
k_tiles_w2 = (N + block_k - 1) // block_k
w1_s = (
torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32)
* factor_for_scale
)
w2_s = (
torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32)
* factor_for_scale
)
w1_ref = block_dequant(w1, w1_s, block_size).to(dtype)
w2_ref = block_dequant(w2, w2_s, block_size).to(dtype)
score = torch.randn((M, E), dtype=dtype)
num_experts_per_partition = E // ep_size
cur_rank = random.randint(0, ep_size - 1)
start_id = cur_rank * num_experts_per_partition
end_id = start_id + num_experts_per_partition - 1
with torch.inference_mode():
out = ep_moe(
hidden_states=a,
w1=w1,
w2=w2,
router_logits=score,
top_k=topk,
renormalize=False,
use_fp8_w8a8=True,
w1_scale_inv=w1_s,
w2_scale_inv=w2_s,
block_shape=block_size,
num_experts=E,
num_experts_per_partition=num_experts_per_partition,
start_expert_id=start_id,
end_expert_id=end_id,
)
ref_out = ep_moe(
hidden_states=a,
w1=w1_ref,
w2=w2_ref,
router_logits=score,
top_k=topk,
renormalize=False,
use_fp8_w8a8=False,
w1_scale_inv=None,
w2_scale_inv=None,
block_shape=None,
num_experts=E,
num_experts_per_partition=num_experts_per_partition,
start_expert_id=start_id,
end_expert_id=end_id,
)
self.assertTrue(
torch.mean(torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)))
/ (torch.mean(torch.abs(ref_out.to(torch.float32))) + 1e-6)
< 0.06
)
def test_w8a8_block_fp8_ep_moe(self):
for params in itertools.product(
self.M,
self.N,
self.K,
self.E,
self.ep_size,
self.TOP_KS,
self.BLOCK_SIZE,
self.DTYPES,
self.SEEDS,
):
with self.subTest(
M=params[0],
N=params[1],
K=params[2],
E=params[3],
ep_size=params[4],
topk=params[5],
block_size=params[6],
dtype=params[7],
seed=params[8],
):
self._w8a8_block_fp8_ep_moe(*params)
torch.cuda.empty_cache()
if __name__ == "__main__":
unittest.main(verbosity=2)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment