Unverified Commit 20f1c8e3 authored by Yubo Wang's avatar Yubo Wang Committed by GitHub
Browse files

Fix sampler nan check when calling top_k_top_p_sampling_from_probs (#5546)

parent 613b197e
......@@ -100,17 +100,16 @@ class Sampler(nn.Module):
probs, sampling_info.min_ps
)
else:
# Check Nan will throw exception, only check when crash_on_warnings is True
check_nan = self.use_nan_detection and crash_on_warnings()
batch_next_token_ids = top_k_top_p_sampling_from_probs(
probs,
sampling_info.top_ks,
sampling_info.top_ps,
filter_apply_order="joint",
check_nan=check_nan,
)
if self.use_nan_detection:
logger.warning("Detected errors during sampling!")
batch_next_token_ids = torch.zeros_like(batch_next_token_ids)
elif global_server_args_dict["sampling_backend"] == "pytorch":
# A slower fallback implementation with torch native operations.
batch_next_token_ids = top_k_top_p_min_p_sampling_from_probs_torch(
......
from typing import Optional, Tuple, Union
from typing import Optional, Union
import torch
from sgl_kernel.utils import _to_tensor_scalar_tuple, get_cuda_stream
......@@ -109,7 +109,7 @@ def _top_p_sampling_from_probs_internal(
top_p_val: float,
deterministic: bool,
generator: Optional[torch.Generator],
) -> Tuple[torch.Tensor, torch.Tensor]:
) -> torch.Tensor:
with probs.device as device:
probs = probs.float()
maybe_top_p_arr = (
......@@ -135,7 +135,7 @@ def top_p_sampling_from_probs(
deterministic: bool = True,
generator: Optional[torch.Generator] = None,
check_nan: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
) -> torch.Tensor:
r"""Adapt from https://github.com/flashinfer-ai/flashinfer/flashinfer/sampling.py
Fused GPU kernel for top-p sampling (nucleus sampling) from probabilities,
this operator implements GPU-based rejection sampling without explicit sorting.
......@@ -194,7 +194,7 @@ def _top_k_top_p_sampling_from_probs_internal(
top_p_val: float,
deterministic: bool,
generator: Optional[torch.Generator],
) -> Tuple[torch.Tensor, torch.Tensor]:
) -> torch.Tensor:
with probs.device as device:
probs = probs.float()
maybe_top_k_arr = maybe_top_k_arr.int() if maybe_top_k_arr is not None else None
......@@ -225,7 +225,7 @@ def top_k_top_p_sampling_from_probs(
deterministic: bool = True,
generator: Optional[torch.Generator] = None,
check_nan: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
) -> torch.Tensor:
r"""Adapt from https://github.com/flashinfer-ai/flashinfer/flashinfer/sampling.py
Fused GPU kernel for top-k and top-p sampling from probabilities,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment