Unverified Commit 20b765a2 authored by simveit's avatar simveit Committed by GitHub
Browse files

Model: Support Qwen 72B RM model. (#3772)

parent e3107222
...@@ -47,7 +47,8 @@ ...@@ -47,7 +47,8 @@
- `python -m sglang.launch_server --model-path Skywork/Skywork-Reward-Gemma-2-27B-v0.2 --is-embedding` - `python -m sglang.launch_server --model-path Skywork/Skywork-Reward-Gemma-2-27B-v0.2 --is-embedding`
- InternLM2ForRewardModel - InternLM2ForRewardModel
- `python -m sglang.launch_server --model-path internlm/internlm2-7b-reward --is-embedding --trust-remote-code` - `python -m sglang.launch_server --model-path internlm/internlm2-7b-reward --is-embedding --trust-remote-code`
- Qwen2ForRewardModel
- `python -m sglang.launch_server --model-path Qwen/Qwen2.5-Math-RM-72B --is-embedding --trust-remote-code --tp-size=4`
## How to Support a New Language Model ## How to Support a New Language Model
To support a new model in SGLang, you only need to add a single file under [SGLang Models Directory](https://github.com/sgl-project/sglang/tree/main/python/sglang/srt/models). To support a new model in SGLang, you only need to add a single file under [SGLang Models Directory](https://github.com/sgl-project/sglang/tree/main/python/sglang/srt/models).
......
...@@ -389,6 +389,7 @@ def is_generation_model(model_architectures: List[str], is_embedding: bool = Fal ...@@ -389,6 +389,7 @@ def is_generation_model(model_architectures: List[str], is_embedding: bool = Fal
or "LlamaForSequenceClassification" in model_architectures or "LlamaForSequenceClassification" in model_architectures
or "LlamaForSequenceClassificationWithNormal_Weights" in model_architectures or "LlamaForSequenceClassificationWithNormal_Weights" in model_architectures
or "InternLM2ForRewardModel" in model_architectures or "InternLM2ForRewardModel" in model_architectures
or "Qwen2ForRewardModel" in model_architectures
): ):
return False return False
else: else:
......
...@@ -379,6 +379,8 @@ class Qwen2ForCausalLM(nn.Module): ...@@ -379,6 +379,8 @@ class Qwen2ForCausalLM(nn.Module):
continue continue
if name.startswith("model.vision_tower") and name not in params_dict: if name.startswith("model.vision_tower") and name not in params_dict:
continue continue
if name.startswith("lm_head"):
continue
for param_name, weight_name, shard_id in stacked_params_mapping: for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name: if weight_name not in name:
......
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from typing import Iterable, Optional, Tuple
import torch
from torch import nn
from transformers import Qwen2Config
from sglang.srt.layers.pooler import EmbeddingPoolerOutput, Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.models.qwen2 import Qwen2ForCausalLM, Qwen2Model
class Qwen2ForRewardModel(nn.Module):
def __init__(
self,
config: Qwen2Config,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.num_labels = 1
self.model = Qwen2Model(config, quant_config=quant_config)
self.score = nn.Sequential(
nn.Linear(config.hidden_size, config.hidden_size),
nn.ReLU(),
nn.Linear(config.hidden_size, self.num_labels),
)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=False)
self.eos_token_id = config.eos_token_id
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
get_embedding: bool = True,
) -> EmbeddingPoolerOutput:
assert get_embedding, "Qwen2ForRewardModel is only used for embedding"
hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
logits = self.score(hidden_states)
pooled_logits = self.pooler(logits, forward_batch).embeddings
return EmbeddingPoolerOutput(pooled_logits)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
return Qwen2ForCausalLM.load_weights(self, weights)
EntryClass = [
Qwen2ForRewardModel,
]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment