Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
1fe691a4
Unverified
Commit
1fe691a4
authored
Aug 02, 2025
by
YanbingJiang
Committed by
GitHub
Aug 01, 2025
Browse files
Fix FP8 block quantization when N or K is not multiples of 128 (#8648)
parent
e2521926
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
39 additions
and
18 deletions
+39
-18
sgl-kernel/csrc/cpu/moe.cpp
sgl-kernel/csrc/cpu/moe.cpp
+10
-10
test/srt/cpu/test_moe.py
test/srt/cpu/test_moe.py
+10
-4
test/srt/cpu/utils.py
test/srt/cpu/utils.py
+19
-4
No files found.
sgl-kernel/csrc/cpu/moe.cpp
View file @
1fe691a4
...
@@ -955,16 +955,16 @@ static inline void check_moe_scales(
...
@@ -955,16 +955,16 @@ static inline void check_moe_scales(
}
}
}
}
#define CHECK_MOE_SCALES_FP8(DIM0, DIM1) \
#define CHECK_MOE_SCALES_FP8(DIM0, DIM1)
\
auto w1s = w1_scale.value(); \
auto w1s = w1_scale.value();
\
auto w2s = w2_scale.value(); \
auto w2s = w2_scale.value();
\
auto block_size_val = block_size.value(); \
auto block_size_val = block_size.value();
\
int64_t block_size_N = block_size_val[0]; \
int64_t block_size_N = block_size_val[0];
\
int64_t block_size_K = block_size_val[1]; \
int64_t block_size_K = block_size_val[1];
\
TORCH_CHECK(w1s.size(DIM0) == 2 * N
/
block_size_N); \
TORCH_CHECK(w1s.size(DIM0) ==
div_up(
2 * N
,
block_size_N)
)
; \
TORCH_CHECK(w1s.size(DIM1) ==
K /
block_size_K); \
TORCH_CHECK(w1s.size(DIM1) ==
div_up(K,
block_size_K)
)
; \
TORCH_CHECK(w2s.size(DIM0) ==
K /
block_size_N); \
TORCH_CHECK(w2s.size(DIM0) ==
div_up(K,
block_size_N)
)
; \
TORCH_CHECK(w2s.size(DIM1) ==
N /
block_size_K)
TORCH_CHECK(w2s.size(DIM1) ==
div_up(N,
block_size_K)
)
// hidden_states: [M, K]
// hidden_states: [M, K]
// w1: [E, 2N, K]
// w1: [E, 2N, K]
...
...
test/srt/cpu/test_moe.py
View file @
1fe691a4
...
@@ -75,8 +75,8 @@ class TestFusedExperts(CustomTestCase):
...
@@ -75,8 +75,8 @@ class TestFusedExperts(CustomTestCase):
topk_int8
=
[
3
]
topk_int8
=
[
3
]
M_fp8
=
[
2
,
121
]
M_fp8
=
[
2
,
121
]
N_fp8
=
[
512
]
N_fp8
=
[
352
,
512
]
K_fp8
=
[
256
]
K_fp8
=
[
256
,
320
]
E_fp8
=
[
8
]
E_fp8
=
[
8
]
topk_fp8
=
[
4
]
topk_fp8
=
[
4
]
...
@@ -201,8 +201,14 @@ class TestFusedExperts(CustomTestCase):
...
@@ -201,8 +201,14 @@ class TestFusedExperts(CustomTestCase):
w2_fp32
=
torch
.
randn
(
E
,
K
,
N
)
w2_fp32
=
torch
.
randn
(
E
,
K
,
N
)
w2
=
(
w2_fp32
*
fp8_max
).
clamp
(
min
=
fp8_min
,
max
=
fp8_max
).
to
(
torch
.
float8_e4m3fn
)
w2
=
(
w2_fp32
*
fp8_max
).
clamp
(
min
=
fp8_min
,
max
=
fp8_max
).
to
(
torch
.
float8_e4m3fn
)
w1s
=
torch
.
randn
(
E
,
2
*
N
//
BLOCK_N
,
K
//
BLOCK_K
)
*
factor_for_scale
w1s
=
(
w2s
=
torch
.
randn
(
E
,
K
//
BLOCK_N
,
N
//
BLOCK_K
)
*
factor_for_scale
torch
.
randn
(
E
,
math
.
ceil
(
2
*
N
/
BLOCK_N
),
math
.
ceil
(
K
/
BLOCK_K
))
*
factor_for_scale
)
w2s
=
(
torch
.
randn
(
E
,
math
.
ceil
(
K
/
BLOCK_N
),
math
.
ceil
(
N
/
BLOCK_K
))
*
factor_for_scale
)
w1_scaled
=
scaled_weight
(
w1
,
w1s
)
w1_scaled
=
scaled_weight
(
w1
,
w1s
)
w2_scaled
=
scaled_weight
(
w2
,
w2s
)
w2_scaled
=
scaled_weight
(
w2
,
w2s
)
...
...
test/srt/cpu/utils.py
View file @
1fe691a4
...
@@ -136,18 +136,33 @@ def torch_w8a8_per_column_moe(a, w1_q, w2_q, w1_s, w2_s, b, routed_scaling_facto
...
@@ -136,18 +136,33 @@ def torch_w8a8_per_column_moe(a, w1_q, w2_q, w1_s, w2_s, b, routed_scaling_facto
def
scaled_weight
(
weight
,
scales
):
def
scaled_weight
(
weight
,
scales
):
E
,
N
,
K
=
weight
.
shape
E
,
N
,
K
=
weight
.
shape
pad_N
=
(
BLOCK_N
-
(
N
%
BLOCK_N
))
%
BLOCK_N
pad_K
=
(
BLOCK_K
-
(
K
%
BLOCK_K
))
%
BLOCK_K
if
pad_N
>
0
or
pad_K
>
0
:
weight
=
torch
.
nn
.
functional
.
pad
(
weight
,
(
0
,
pad_K
,
0
,
pad_N
))
weight_block
=
(
weight_block
=
(
weight
.
view
(
E
,
N
/
/
BLOCK_N
,
BLOCK_N
,
K
/
/
BLOCK_K
,
BLOCK_K
)
weight
.
view
(
E
,
math
.
ceil
(
N
/
BLOCK_N
)
,
BLOCK_N
,
math
.
ceil
(
K
/
BLOCK_K
)
,
BLOCK_K
)
.
permute
(
0
,
1
,
3
,
2
,
4
)
.
permute
(
0
,
1
,
3
,
2
,
4
)
.
float
()
.
float
()
.
contiguous
()
.
contiguous
()
)
)
return
(
(
weight_block
*
scales
.
view
(
E
,
N
//
BLOCK_N
,
K
//
BLOCK_K
,
1
,
1
))
weight_scaled
=
(
(
weight_block
*
scales
.
view
(
E
,
math
.
ceil
(
N
/
BLOCK_N
),
math
.
ceil
(
K
/
BLOCK_K
),
1
,
1
)
)
.
permute
(
0
,
1
,
3
,
2
,
4
)
.
permute
(
0
,
1
,
3
,
2
,
4
)
.
contiguous
()
.
contiguous
()
.
view
(
E
,
N
,
K
)
)
)
if
pad_N
>
0
or
pad_K
>
0
:
weight_scaled
=
weight_scaled
.
view
(
E
,
N
+
pad_N
,
K
+
pad_K
)
weight_scaled
=
weight_scaled
[...,
:
N
,
:
K
].
contiguous
()
else
:
weight_scaled
=
weight_scaled
.
view
(
E
,
N
,
K
)
return
weight_scaled
def
torch_naive_fused_moe
(
a
,
w1
,
w2
,
score
,
topk
,
renormalize
):
def
torch_naive_fused_moe
(
a
,
w1
,
w2
,
score
,
topk
,
renormalize
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment