Unverified Commit 1df6eabd authored by Andrew Smith's avatar Andrew Smith Committed by GitHub
Browse files

feat: Add SageMaker support (#3740)

parent 0c227ee3
ARG CUDA_VERSION=12.5.1
FROM nvcr.io/nvidia/tritonserver:24.04-py3-min
ARG BUILD_TYPE=all
ENV DEBIAN_FRONTEND=noninteractive
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt update -y \
&& apt install software-properties-common -y \
&& add-apt-repository ppa:deadsnakes/ppa -y && apt update \
&& apt install python3.10 python3.10-dev -y \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1 \
&& update-alternatives --set python3 /usr/bin/python3.10 && apt install python3.10-distutils -y \
&& apt install curl git sudo libibverbs-dev -y \
&& apt install -y rdma-core infiniband-diags openssh-server perftest ibverbs-providers libibumad3 libibverbs1 libnl-3-200 libnl-route-3-200 librdmacm1 \
&& curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && python3 get-pip.py \
&& python3 --version \
&& python3 -m pip --version \
&& rm -rf /var/lib/apt/lists/* \
&& apt clean
# For openbmb/MiniCPM models
RUN pip3 install datamodel_code_generator
WORKDIR /sgl-workspace
ARG CUDA_VERSION
RUN python3 -m pip install --upgrade pip setuptools wheel html5lib six \
&& git clone --depth=1 https://github.com/sgl-project/sglang.git \
&& if [ "$CUDA_VERSION" = "12.1.1" ]; then \
python3 -m pip install torch --index-url https://download.pytorch.org/whl/cu121; \
elif [ "$CUDA_VERSION" = "12.4.1" ]; then \
python3 -m pip install torch --index-url https://download.pytorch.org/whl/cu124; \
elif [ "$CUDA_VERSION" = "12.5.1" ]; then \
python3 -m pip install torch --index-url https://download.pytorch.org/whl/cu124; \
elif [ "$CUDA_VERSION" = "11.8.0" ]; then \
python3 -m pip install torch --index-url https://download.pytorch.org/whl/cu118; \
python3 -m pip install sgl-kernel -i https://docs.sglang.ai/whl/cu118; \
else \
echo "Unsupported CUDA version: $CUDA_VERSION" && exit 1; \
fi \
&& cd sglang \
&& if [ "$BUILD_TYPE" = "srt" ]; then \
if [ "$CUDA_VERSION" = "12.1.1" ]; then \
python3 -m pip --no-cache-dir install -e "python[srt]" --find-links https://flashinfer.ai/whl/cu121/torch2.5/flashinfer-python; \
elif [ "$CUDA_VERSION" = "12.4.1" ]; then \
python3 -m pip --no-cache-dir install -e "python[srt]" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python; \
elif [ "$CUDA_VERSION" = "12.5.1" ]; then \
python3 -m pip --no-cache-dir install -e "python[srt]" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python; \
elif [ "$CUDA_VERSION" = "11.8.0" ]; then \
python3 -m pip --no-cache-dir install -e "python[srt]" --find-links https://flashinfer.ai/whl/cu118/torch2.5/flashinfer-python; \
python3 -m pip install sgl-kernel -i https://docs.sglang.ai/whl/cu118; \
else \
echo "Unsupported CUDA version: $CUDA_VERSION" && exit 1; \
fi; \
else \
if [ "$CUDA_VERSION" = "12.1.1" ]; then \
python3 -m pip --no-cache-dir install -e "python[all]" --find-links https://flashinfer.ai/whl/cu121/torch2.5/flashinfer-python; \
elif [ "$CUDA_VERSION" = "12.4.1" ]; then \
python3 -m pip --no-cache-dir install -e "python[all]" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python; \
elif [ "$CUDA_VERSION" = "12.5.1" ]; then \
python3 -m pip --no-cache-dir install -e "python[all]" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python; \
elif [ "$CUDA_VERSION" = "11.8.0" ]; then \
python3 -m pip --no-cache-dir install -e "python[all]" --find-links https://flashinfer.ai/whl/cu118/torch2.5/flashinfer-python; \
python3 -m pip install sgl-kernel -i https://docs.sglang.ai/whl/cu118; \
else \
echo "Unsupported CUDA version: $CUDA_VERSION" && exit 1; \
fi; \
fi
ENV DEBIAN_FRONTEND=interactive
COPY serve /usr/bin/serve
RUN chmod 777 /usr/bin/serve
ENTRYPOINT [ "/usr/bin/serve" ]
#!/bin/bash
echo "Starting server"
SERVER_ARGS="--host 0.0.0.0 --port 8080"
if [ -n "$TENSOR_PARALLEL_DEGREE" ]; then
SERVER_ARGS="${SERVER_ARGS} --tp-size ${TENSOR_PARALLEL_DEGREE}"
fi
if [ -n "$DATA_PARALLEL_DEGREE" ]; then
SERVER_ARGS="${SERVER_ARGS} --dp-size ${DATA_PARALLEL_DEGREE}"
fi
if [ -n "$EXPERT_PARALLEL_DEGREE" ]; then
SERVER_ARGS="${SERVER_ARGS} --ep-size ${EXPERT_PARALLEL_DEGREE}"
fi
if [ -n "$MEM_FRACTION_STATIC" ]; then
SERVER_ARGS="${SERVER_ARGS} --mem-fraction-static ${MEM_FRACTION_STATIC}"
fi
if [ -n "$QUANTIZATION" ]; then
SERVER_ARGS="${SERVER_ARGS} --quantization ${QUANTIZATION}"
fi
if [ -n "$CHUNKED_PREFILL_SIZE" ]; then
SERVER_ARGS="${SERVER_ARGS} --chunked-prefill-size ${CHUNKED_PREFILL_SIZE}"
fi
python3 -m sglang.launch_server --model-path /opt/ml/model $SERVER_ARGS
......@@ -463,6 +463,18 @@ async def retrieve_file_content(file_id: str):
return await v1_retrieve_file_content(file_id)
## SageMaker API
@app.get("/ping")
async def sagemaker_health() -> Response:
"""Check the health of the http server."""
return Response(status_code=200)
@app.post("/invocations")
async def sagemaker_chat_completions(raw_request: Request):
return await v1_chat_completions(_global_state.tokenizer_manager, raw_request)
def _create_error_response(e):
return ORJSONResponse(
{"error": {"message": str(e)}}, status_code=HTTPStatus.BAD_REQUEST
......
"""
python3 -m unittest test_sagemaker_server.TestSageMakerServer.test_chat_completion
"""
import json
import unittest
import requests
from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
popen_launch_server,
)
class TestSageMakerServer(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
cls.base_url = DEFAULT_URL_FOR_TEST
cls.api_key = "sk-123456"
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
api_key=cls.api_key,
)
cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def run_chat_completion(self, logprobs, parallel_sample_num):
data = {
"model": self.model,
"messages": [
{"role": "system", "content": "You are a helpful AI assistant"},
{
"role": "user",
"content": "What is the capital of France? Answer in a few words.",
},
],
"temperature": 0,
"logprobs": logprobs is not None and logprobs > 0,
"top_logprobs": logprobs,
"n": parallel_sample_num,
}
headers = {"Authorization": f"Bearer {self.api_key}"}
response = requests.post(
f"{self.base_url}/invocations", json=data, headers=headers
).json()
if logprobs:
assert isinstance(
response["choices"][0]["logprobs"]["content"][0]["top_logprobs"][0][
"token"
],
str,
)
ret_num_top_logprobs = len(
response["choices"][0]["logprobs"]["content"][0]["top_logprobs"]
)
assert (
ret_num_top_logprobs == logprobs
), f"{ret_num_top_logprobs} vs {logprobs}"
assert len(response["choices"]) == parallel_sample_num
assert response["choices"][0]["message"]["role"] == "assistant"
assert isinstance(response["choices"][0]["message"]["content"], str)
assert response["id"]
assert response["created"]
assert response["usage"]["prompt_tokens"] > 0
assert response["usage"]["completion_tokens"] > 0
assert response["usage"]["total_tokens"] > 0
def run_chat_completion_stream(self, logprobs, parallel_sample_num=1):
data = {
"model": self.model,
"messages": [
{"role": "system", "content": "You are a helpful AI assistant"},
{
"role": "user",
"content": "What is the capital of France? Answer in a few words.",
},
],
"temperature": 0,
"logprobs": logprobs is not None and logprobs > 0,
"top_logprobs": logprobs,
"stream": True,
"stream_options": {"include_usage": True},
"n": parallel_sample_num,
}
headers = {"Authorization": f"Bearer {self.api_key}"}
response = requests.post(
f"{self.base_url}/invocations", json=data, stream=True, headers=headers
)
is_firsts = {}
for line in response.iter_lines():
line = line.decode("utf-8").replace("data: ", "")
if len(line) < 1 or line == "[DONE]":
continue
print(f"value: {line}")
line = json.loads(line)
usage = line.get("usage")
if usage is not None:
assert usage["prompt_tokens"] > 0
assert usage["completion_tokens"] > 0
assert usage["total_tokens"] > 0
continue
index = line.get("choices")[0].get("index")
data = line.get("choices")[0].get("delta")
if is_firsts.get(index, True):
assert data["role"] == "assistant"
is_firsts[index] = False
continue
if logprobs:
assert line.get("choices")[0].get("logprobs")
assert isinstance(
line.get("choices")[0]
.get("logprobs")
.get("content")[0]
.get("top_logprobs")[0]
.get("token"),
str,
)
assert isinstance(
line.get("choices")[0]
.get("logprobs")
.get("content")[0]
.get("top_logprobs"),
list,
)
ret_num_top_logprobs = len(
line.get("choices")[0]
.get("logprobs")
.get("content")[0]
.get("top_logprobs")
)
assert (
ret_num_top_logprobs == logprobs
), f"{ret_num_top_logprobs} vs {logprobs}"
assert isinstance(data["content"], str)
assert line["id"]
assert line["created"]
for index in [i for i in range(parallel_sample_num)]:
assert not is_firsts.get(
index, True
), f"index {index} is not found in the response"
def test_chat_completion(self):
for logprobs in [None, 5]:
for parallel_sample_num in [1, 2]:
self.run_chat_completion(logprobs, parallel_sample_num)
def test_chat_completion_stream(self):
for logprobs in [None, 5]:
for parallel_sample_num in [1, 2]:
self.run_chat_completion_stream(logprobs, parallel_sample_num)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment