Unverified Commit 1db649ac authored by JieXin Liang's avatar JieXin Liang Committed by GitHub
Browse files

[feat] apply deep_gemm compile_mode to skip launch (#9879)

parent a1e5d781
......@@ -85,10 +85,10 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip setuptools wheel html5li
&& python3 -m pip install --no-cache-dir nvidia-nccl-cu12==2.27.6 --force-reinstall --no-deps \
&& python3 -m flashinfer --download-cubin \
&& if [ "$CUDA_VERSION" = "12.8.1" ]; then \
python3 -m pip install --no-cache-dir https://github.com/sgl-project/whl/releases/download/v0.3.7.post1/sgl_kernel-0.3.7.post1+cu128-cp310-abi3-manylinux2014_x86_64.whl --force-reinstall --no-deps ; \
python3 -m pip install --no-cache-dir https://github.com/sgl-project/whl/releases/download/v0.3.8/sgl_kernel-0.3.8+cu128-cp310-abi3-manylinux2014_x86_64.whl --force-reinstall --no-deps ; \
fi \
&& if [ "$CUDA_VERSION" = "12.9.1" ]; then \
python3 -m pip install --no-cache-dir https://github.com/sgl-project/whl/releases/download/v0.3.7.post1/sgl_kernel-0.3.7.post1+cu129-cp310-abi3-manylinux2014_x86_64.whl --force-reinstall --no-deps ; \
python3 -m pip install --no-cache-dir https://github.com/sgl-project/whl/releases/download/v0.3.8/sgl_kernel-0.3.8+cu129-cp310-abi3-manylinux2014_x86_64.whl --force-reinstall --no-deps ; \
fi
# Download source files
......
......@@ -58,7 +58,7 @@ runtime_common = [
srt = [
"sglang[runtime_common]",
"sgl-kernel==0.3.7.post1",
"sgl-kernel==0.3.8",
"torch==2.8.0",
"torchaudio==2.8.0",
"torchvision",
......
......@@ -681,7 +681,7 @@ def _set_envs_and_config(server_args: ServerArgs):
if _is_cuda and not get_bool_env_var("SGLANG_SKIP_SGL_KERNEL_VERSION_CHECK"):
assert_pkg_version(
"sgl-kernel",
"0.3.7.post1",
"0.3.8",
"Please reinstall the latest version with `pip install sgl-kernel --force-reinstall`",
)
......
......@@ -132,9 +132,17 @@ def _compile_deep_gemm_one_type_all(
kernel_type, max_m=max(m_list), n=n, k=k, num_groups=num_groups
)
old_compile_mode = deep_gemm.get_compile_mode()
deep_gemm.set_compile_mode(1)
# TODO can use multi thread
for m in tqdm(m_list, desc=f"DeepGEMM warmup"):
executor.execute(m=m)
deep_gemm.set_compile_mode(old_compile_mode)
# clean up input buffers
torch.cuda.current_stream().synchronize()
del executor
torch.cuda.empty_cache()
class _BaseWarmupExecutor:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment