Unverified Commit 1b1701f1 authored by chenge@xiaohongshu.com's avatar chenge@xiaohongshu.com Committed by GitHub
Browse files

model: support dots.vlm1 model (#8778)


Co-authored-by: default avatarweishi <bushou@xiaohongshu.com>
Co-authored-by: default avatarEzra-Yu <1105212286@qq.com>
Co-authored-by: default avatarJianfei Wang <905787410@qq.com>
Co-authored-by: default avatarqianwu <wangjianfei@xiaohongshu.com>
parent 6d403089
......@@ -124,7 +124,9 @@ async def eval_mmmu(args) -> None:
answer_dict = {}
out_samples = {}
client = openai.AsyncOpenAI(
api_key="sk", base_url=f"http://127.0.0.1:{args.port}/v1"
api_key="sk",
base_url=f"http://127.0.0.1:{args.port}/v1",
timeout=20 * 60 * 60,
)
start = time.perf_counter()
base_url = f"http://127.0.0.1:{args.port}"
......@@ -146,13 +148,14 @@ async def eval_mmmu(args) -> None:
_, response = await process_sample(
client, sample, sampling_params, lora_path
)
sample["original_response"] = response
answer = (
re.search(args.response_answer_regex, response)
if response is not None
else None
)
process_result(
answer.group(1) if answer else response,
answer.group(1).strip() if answer else response,
sample,
answer_dict,
out_samples,
......@@ -168,13 +171,14 @@ async def eval_mmmu(args) -> None:
for coro in tqdm(asyncio.as_completed(tasks), total=len(tasks)):
sample, response = await coro
sample["original_response"] = response
answer = (
re.search(args.response_answer_regex, response)
if response is not None
else None
)
process_result(
answer.group(1) if answer else response,
answer.group(1).strip() if answer else response,
sample,
answer_dict,
out_samples,
......
......@@ -18,6 +18,7 @@ from data_utils import (
construct_prompt,
load_yaml,
process_single_sample,
save_json,
)
from datasets import concatenate_datasets, load_dataset
from tqdm import tqdm
......@@ -28,7 +29,7 @@ class EvalArgs:
seed: int = 42
split: str = "validation"
image_pixels_limit: int = -1
result_filename: str = ""
result_filename: str = f"./val_sglang.json"
prompt_format_file: str = "prompt_format.yaml"
dataset_path: str = "MMMU/MMMU"
extra_request_body: Optional[str] = None
......@@ -445,6 +446,18 @@ def eval_multi_choice(gold_i, pred_i):
Evaluate a multiple choice instance.
"""
correct = False
# for case like Answer: A, Answer is A, answer is A, answer: A
for _exp in ["Answer:", "Answer is ", "answer is ", "answer: "]:
if _exp in pred_i:
pred_i = pred_i.split(_exp)[1].strip()
break
# for case like (A), (B), (C), (D) ......
if "(" in pred_i and ")" in pred_i:
try:
pred_i = re.search(r"\(([A-Z])\)", pred_i).group(1)
except:
print(f"Error to extract answer from: {pred_i}")
pass
# only they are exactly the same, we consider it as correct
if isinstance(gold_i, list):
for answer in gold_i:
......@@ -535,7 +548,12 @@ def process_result(response, sample, answer_dict, out_samples):
else: # open question
pred_ans = response
out_samples[sample["id"]] = pred_ans
out_samples[sample["id"]] = {
"pred_ans": pred_ans,
"original_response": sample["original_response"],
"ground_truth": sample["answer"],
"question_type": sample["question_type"],
}
# set ground truth answer
answer_dict[sample["id"]] = {
......@@ -554,6 +572,12 @@ def eval_result(model_answer_path, answer_dict, eval_output_path=None):
# group by category
output_dict_w_cat = {}
for data_id, parsed_pred in output_dict.items():
if isinstance(parsed_pred, str):
parsed_pred = parsed_pred
elif isinstance(parsed_pred, dict):
parsed_pred = parsed_pred["pred_ans"]
else:
raise ValueError(f"Unknown type of parsed_pred: {type(parsed_pred)}")
category = "_".join(data_id.split("_")[1:-1])
if category not in output_dict_w_cat:
output_dict_w_cat.update({category: {}})
......@@ -600,9 +624,12 @@ def eval_result(model_answer_path, answer_dict, eval_output_path=None):
judge_dict, metric_dict = evaluate(exampels_to_eval)
metric_dict.update({"num_example": len(exampels_to_eval)})
for key, value in judge_dict.items():
output_dict[key]["judge"] = value
evaluation_result[category] = metric_dict
save_json(model_answer_path, output_dict)
printable_results = {}
# pdb.set_trace()
# add domain Subject
......
......@@ -44,7 +44,6 @@ runtime_common = [
"pynvml",
"python-multipart",
"pyzmq>=25.1.2",
"sentencepiece",
"soundfile==0.13.1",
"scipy",
"timm==1.0.16",
......
from sglang.srt.configs.chatglm import ChatGLMConfig
from sglang.srt.configs.dbrx import DbrxConfig
from sglang.srt.configs.deepseekvl2 import DeepseekVL2Config
from sglang.srt.configs.dots_vlm import DotsVLMConfig
from sglang.srt.configs.exaone import ExaoneConfig
from sglang.srt.configs.janus_pro import MultiModalityConfig
from sglang.srt.configs.kimi_vl import KimiVLConfig
......@@ -26,4 +27,5 @@ __all__ = [
"Step3TextConfig",
"Step3VisionEncoderConfig",
"Qwen3NextConfig",
"DotsVLMConfig",
]
from typing import Any, List, Optional, Union
from transformers import AutoProcessor, LlamaTokenizerFast, PretrainedConfig
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessingKwargs, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
try:
from transformers import Qwen2_5_VLProcessor
except ImportError:
raise ImportError(
"Qwen2_5_VLProcessor can not be found. Please upgrade your transformers version."
)
from sglang.srt.configs.deepseekvl2 import DeepseekV2Config
class DotsVisionConfig(PretrainedConfig):
model_type: str = "dots_vit"
def __init__(
self,
embed_dim: int = 1536, # vision encoder embed size
hidden_size: int = 1536, # after merger hidden size
intermediate_size: int = 4224,
num_hidden_layers: int = 42,
num_attention_heads: int = 12,
num_channels: int = 3,
patch_size: int = 14,
spatial_merge_size: int = 2,
temporal_patch_size: int = 1,
rms_norm_eps: float = 1e-5,
use_bias: bool = False,
attn_implementation="flash_attention_2", # "eager","sdpa","flash_attention_2"
initializer_range=0.02,
init_merger_std=0.02,
is_causal=False, # ve causal forward
post_norm=True,
gradient_checkpointing=False,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.temporal_patch_size = temporal_patch_size
self.rms_norm_eps = rms_norm_eps
self.use_bias = use_bias
self.attn_implementation = attn_implementation
self.initializer_range = initializer_range
self.init_merger_std = init_merger_std
self.is_causal = is_causal
self.post_norm = post_norm
self.gradient_checkpointing = gradient_checkpointing
class DotsVLMConfig(PretrainedConfig):
model_type = "dots_vlm"
def __init__(self, **kwargs):
super().__init__(**kwargs)
vision_config = kwargs.get("vision_config", {})
self.im_span_id = kwargs.get("image_token_id", 128815)
self.video_span_id = kwargs.get("video_token_id", 128836)
self.vision_config = DotsVisionConfig(**vision_config)
self.language_config = DeepseekV2Config(**kwargs)
self.architectures = ["DotsVLMForCausalLM"]
class DotsVLMProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
}
class DotsVLMProcessor(Qwen2_5_VLProcessor):
r"""
Constructs a DotsVLM processor which derives from Qwen2_5_VLProcessor, but overrides the image and video token ids.
Besides, its tokenizer is a LlamaTokenizerFast instead of Qwen2TokenizerFast.
[`DotsVLMProcessor`] offers all the functionalities of [`DotsVisionConfig`] and [`LlamaTokenizerFast`]. See the
[`~DotsVLMProcessor.__call__`] and [`~DotsVLMProcessor.decode`] for more information.
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
def __init__(
self, image_processor=None, tokenizer=None, chat_template=None, **kwargs
):
super().__init__(image_processor, tokenizer, chat_template=chat_template)
self.image_token = (
"<|imgpad|>"
if not hasattr(tokenizer, "image_token")
else tokenizer.image_token
)
self.video_token = (
"<|video_pad|>"
if not hasattr(tokenizer, "video_token")
else tokenizer.video_token
)
self.img_token = (
"<|img|>" if not hasattr(tokenizer, "img_token") else tokenizer.img_token
)
self.endofimg_token = (
"<|endofimg|>"
if not hasattr(tokenizer, "endofimg_token")
else tokenizer.endofimg_token
)
self.image_token_id = (
tokenizer.image_token_id
if getattr(tokenizer, "image_token_id", None)
else tokenizer.encode(self.image_token)[0]
)
self.video_token_id = (
tokenizer.video_token_id
if getattr(tokenizer, "video_token_id", None)
else tokenizer.encode(self.video_token)[0]
)
AutoProcessor.register(DotsVLMConfig, DotsVLMProcessor)
......@@ -216,6 +216,7 @@ class ModelConfig:
or "DeepseekV3ForCausalLMNextN" in self.hf_config.architectures
or "LongcatFlashForCausalLM" in self.hf_config.architectures
or "LongcatFlashForCausalLMNextN" in self.hf_config.architectures
or "DotsVLMForCausalLM" in self.hf_config.architectures
):
self.head_dim = 256
self.attention_arch = AttentionArch.MLA
......@@ -734,6 +735,7 @@ multimodal_model_archs = [
"Phi4MMForCausalLM",
"VILAForConditionalGeneration",
"Step3VLForConditionalGeneration",
"DotsVLMForCausalLM",
]
......
......@@ -38,6 +38,7 @@ from sglang.srt.configs import (
ChatGLMConfig,
DbrxConfig,
DeepseekVL2Config,
DotsVLMConfig,
ExaoneConfig,
KimiVLConfig,
LongcatFlashConfig,
......@@ -60,6 +61,7 @@ _CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
Step3VLConfig.model_type: Step3VLConfig,
LongcatFlashConfig.model_type: LongcatFlashConfig,
Qwen3NextConfig.model_type: Qwen3NextConfig,
DotsVLMConfig.model_type: DotsVLMConfig,
}
for name, cls in _CONFIG_REGISTRY.items():
......
# Copyright 2025 The RedNote HiLab team.
# Copyright 2025 The SGLang team.
#
# This code is based on the DeepseekVL2ForCausalLM and DotsVisionTransformer
# implementation in this library.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Dots-VL model compatible with HuggingFace weights."""
from typing import Iterable, List, Optional, Tuple
import torch
from torch import nn
from sglang.srt.configs.dots_vlm import DotsVLMConfig
from sglang.srt.distributed import parallel_state
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.managers.mm_utils import (
MultiModalityDataPaddingPatternMultimodalTokens,
general_mm_embed_routine,
)
from sglang.srt.managers.schedule_batch import MultimodalDataItem, MultimodalInputs
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.deepseek_v2 import DeepseekV2ForCausalLM
from .dots_vlm_vit import DotsVisionTransformer
class DotsVLMForCausalLM(nn.Module):
"""DotsVLM model for sglang inference"""
def __init__(
self, config: DotsVLMConfig, quant_config: Optional[QuantizationConfig] = None
) -> None:
super().__init__()
self.config = config
self.image_token_id = config.im_span_id
self.video_token_id = config.video_span_id
self.language_model = DeepseekV2ForCausalLM(
config.language_config, quant_config
)
# Initialize vision tower (matching transformers naming for weight compatibility)
self.vision_tower = DotsVisionTransformer(config.vision_config)
def _pad_vit_attn_dummy_heads(self, name: str, loaded_weight: torch.Tensor):
"""pad attn qkv weights for dummy heads"""
num_dummy_heads = self.config.vision_config.num_dummy_heads
if num_dummy_heads == 0:
return loaded_weight
head_dim = self.config.vision_config.head_dim
if "attn.qkv_proj" in name:
wq, wk, wv = loaded_weight.chunk(3, dim=0)
if name.endswith(".weight"):
dummy_shape = [num_dummy_heads, head_dim, wq.shape[-1]]
elif name.endswith(".bias"):
dummy_shape = [num_dummy_heads, head_dim]
else:
raise RuntimeError(f"Unsupported weight with name={name}")
pad_func = lambda x: torch.cat(
[x.unflatten(0, (-1, head_dim)), x.new_zeros(dummy_shape)], dim=0
).flatten(0, 1)
wq, wk, wv = pad_func(wq), pad_func(wk), pad_func(wv)
loaded_weight = torch.cat([wq, wk, wv], dim=0)
if "attn.proj.weight" in name:
padded_weight = loaded_weight.new_zeros(
loaded_weight.shape[0], head_dim * num_dummy_heads
)
loaded_weight = torch.cat([loaded_weight, padded_weight], dim=-1)
if "attn.q_norm.weight" in name or "attn.k_norm.weight" in name:
padded_weight = loaded_weight.new_zeros(head_dim * num_dummy_heads)
loaded_weight = torch.cat([loaded_weight, padded_weight], dim=0)
return loaded_weight
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
"""Load weights for the model, separating vision and language weights"""
weights = list(weights)
# Separate vision tower weights and language model weights
vision_weights = []
language_weights = []
for name, loaded_weight in weights:
if name.startswith("vision_tower."):
vision_name = name.replace(r"attn.qkv.", r"attn.qkv_proj.")
vision_weights.append((vision_name, loaded_weight))
else:
# All other weights go to language model
language_weights.append((name, loaded_weight))
# Load vision tower weights
vision_state_dict = dict(vision_weights)
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in vision_state_dict.items():
if name not in params_dict:
raise ValueError(f"Weight {name} not found in params_dict")
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
loaded_weight = self._pad_vit_attn_dummy_heads(name, loaded_weight)
weight_loader(param, loaded_weight)
# Load language model weights
if language_weights:
self.language_model.load_weights(language_weights)
@classmethod
def get_model_config_for_expert_location(cls, config):
return DeepseekV2ForCausalLM.get_model_config_for_expert_location(config)
def pad_input_ids(self, input_ids: List[int], mm_inputs: MultimodalInputs):
"""Pad input_ids with multimodal tokens"""
# Get image token ID for padding pattern
pattern = MultiModalityDataPaddingPatternMultimodalTokens()
padded_input_ids = pattern.pad_input_tokens(input_ids, mm_inputs)
return padded_input_ids
def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
# Extract pixel values and grid information (following reference pattern)
pixel_values = torch.cat([item.feature for item in items], dim=0).type(
self.vision_tower.dtype
)
image_grid_thw = torch.concat(
[item.image_grid_thw for item in items], dim=0
).to(self.vision_tower.device)
# Add dimension checks like in reference code
assert pixel_values.dim() == 2, f"{pixel_values.dim()=}"
assert image_grid_thw.dim() == 2, f"{image_grid_thw.dim()=}"
# Process through vision tower
image_embeds = self.vision_tower(pixel_values, image_grid_thw)
# Ensure consistent dtype for FlashInfer compatibility
# Force bfloat16 to match model's expected dtype
if image_embeds.dtype != torch.bfloat16 and hasattr(
self.language_model.model, "embed_tokens"
):
target_dtype = self.language_model.model.embed_tokens.weight.dtype
image_embeds = image_embeds.to(target_dtype)
return image_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
**kwargs: object,
) -> torch.Tensor:
hidden_states = general_mm_embed_routine(
input_ids=input_ids,
positions=positions,
forward_batch=forward_batch,
multimodal_model=self,
language_model=self.language_model,
)
return hidden_states
EntryClass = [DotsVLMForCausalLM]
import logging
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import LayerNorm
from transformers.modeling_utils import PreTrainedModel
from sglang.srt.configs.dots_vlm import DotsVisionConfig
from sglang.srt.distributed import parallel_state
from sglang.srt.layers.attention.vision import VisionAttention
from sglang.srt.layers.quantization import QuantizationConfig
from sglang.srt.utils import add_prefix
logger = logging.getLogger(__name__)
class VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(seq, self.inv_freq)
return freqs
class PatchMerger(nn.Module):
def __init__(
self,
dim: int,
context_dim: int,
spatial_merge_size: int = 2,
pre_norm="layernorm",
init_merger_std=None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size**2)
self.pre_norm = pre_norm
if self.pre_norm == "layernorm":
self.ln_q = LayerNorm(context_dim, eps=1e-6)
elif self.pre_norm == "rmsnorm":
self.ln_q = RMSNorm(context_dim, eps=1e-6)
else:
logger.warning(f"no norm in patch merger: {self.pre_norm}")
self.mlp = nn.Sequential(
nn.Linear(self.hidden_size, self.hidden_size),
nn.GELU(),
nn.Linear(self.hidden_size, dim),
)
if init_merger_std is not None:
nn.init.normal_(self.mlp[0].weight, mean=0.0, std=init_merger_std)
nn.init.zeros_(self.mlp[0].bias)
nn.init.normal_(self.mlp[2].weight, mean=0.0, std=init_merger_std)
nn.init.zeros_(self.mlp[2].bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.pre_norm:
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
else:
x = self.mlp(x.view(-1, self.hidden_size))
return x
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def extra_repr(self) -> str:
return f"{tuple(self.weight.shape)}, eps={self.eps}"
def _norm(self, x: torch.Tensor) -> torch.Tensor:
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
class DotsSwiGLUFFN(nn.Module):
def __init__(self, config, quant_config: Optional[QuantizationConfig] = None):
super().__init__()
hidden_features = config.intermediate_size
in_features = config.embed_dim
bias = config.use_bias
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.silu(self.fc1(x)) * self.fc3(x)
x = self.fc2(x)
return x
class DotsPatchEmbed(nn.Module):
def __init__(self, config, quant_config: Optional[QuantizationConfig] = None):
super().__init__()
self.num_channels = config.num_channels
self.patch_size = config.patch_size
self.temporal_patch_size = config.temporal_patch_size
self.embed_dim = config.embed_dim
self.config = config
self.proj = nn.Conv2d(
config.num_channels,
config.embed_dim,
kernel_size=(config.patch_size, config.patch_size),
stride=(config.patch_size, config.patch_size),
)
self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
x = x.view(
-1,
self.num_channels,
self.temporal_patch_size,
self.patch_size,
self.patch_size,
)[:, :, 0]
x = self.proj(x).view(-1, self.embed_dim)
x = self.norm(x)
return x
class DotsViTPreprocessor(nn.Module):
def __init__(self, config, quant_config: Optional[QuantizationConfig] = None):
super().__init__()
self.patch_h = config.patch_size
self.patch_w = config.patch_size
self.embed_dim = config.embed_dim
self.config = config
self.patchifier = DotsPatchEmbed(config, quant_config)
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
tokens = self.patchifier(x, grid_thw)
return tokens
class DotsVisionBlock(nn.Module):
def __init__(
self,
config: DotsVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
attn_implementation: str = "flash_attention_2",
):
super().__init__()
if attn_implementation == "flash_attention_2":
qkv_backend = "fa3"
softmax_in_single_precision = False
else:
raise RuntimeError("Unimplemented")
self.attn = VisionAttention(
embed_dim=config.embed_dim,
num_heads=config.num_attention_heads,
projection_size=config.embed_dim,
use_qkv_parallel=True,
qkv_backend=qkv_backend,
softmax_in_single_precision=softmax_in_single_precision,
flatten_batch=True,
quant_config=quant_config,
prefix=add_prefix("attn", prefix),
num_dummy_heads=config.num_dummy_heads,
qkv_bias=config.use_bias,
proj_bias=config.use_bias,
)
self.norm1 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
self.mlp = DotsSwiGLUFFN(config, quant_config)
self.norm2 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
hidden_states = hidden_states + self.attn(
self.norm1(hidden_states),
cu_seqlens=cu_seqlens,
position_embeddings=rotary_pos_emb,
)
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
return hidden_states
class DotsVisionTransformer(PreTrainedModel):
def __init__(
self,
config: DotsVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__(config)
self.config = config
self._update_vision_config()
self.spatial_merge_size = config.spatial_merge_size
self.patch_embed = DotsViTPreprocessor(config, quant_config)
self._init_weights(self.patch_embed.patchifier.proj)
head_dim = config.embed_dim // config.num_attention_heads
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
_num_hidden_layers = config.num_hidden_layers
self.blocks = nn.ModuleList(
[
DotsVisionBlock(
config, quant_config, f"blocks.{i}", config.attn_implementation
)
for i in range(_num_hidden_layers)
]
)
if self.config.post_norm:
self.post_trunk_norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
self.merger = PatchMerger(
dim=config.hidden_size,
context_dim=config.embed_dim,
spatial_merge_size=config.spatial_merge_size,
init_merger_std=self.config.init_merger_std,
quant_config=quant_config,
)
self.gradient_checkpointing = False
def _update_vision_config(self):
"""update vision config to support tp"""
world_size = parallel_state.get_tensor_model_parallel_world_size()
num_heads = self.config.num_attention_heads
head_dim = self.config.embed_dim // num_heads
num_dummy_heads = 0
if num_heads % world_size != 0:
num_dummy_heads = (
(num_heads + world_size) // world_size
) * world_size - num_heads
setattr(self.config, "head_dim", head_dim)
setattr(self.config, "num_dummy_heads", num_dummy_heads)
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dtype(self) -> torch.dtype:
return self.blocks[0].mlp.fc2.weight.dtype
@property
def device(self) -> torch.device:
return self.blocks[0].mlp.fc2.weight.device
def get_pos_ids_by_grid(self, grid_thw):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
return pos_ids
def rot_pos_emb(self, grid_thw):
pos_ids = self.get_pos_ids_by_grid(grid_thw)
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def calc_cos_sin(self, rotary_pos_emb):
cos = rotary_pos_emb.cos()
sin = rotary_pos_emb.sin()
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
rotary_pos_emb = (cos, sin)
return rotary_pos_emb
def forward(
self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, bf16=True
) -> torch.Tensor:
if bf16:
hidden_states = hidden_states.bfloat16()
hidden_states = self.patch_embed(hidden_states, grid_thw)
rotary_pos_emb = self.rot_pos_emb(grid_thw)
rotary_pos_emb = self.calc_cos_sin(rotary_pos_emb)
cu_seqlens = torch.repeat_interleave(
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
).cumsum(
dim=0,
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for blk in self.blocks:
hidden_states = blk(
hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
)
if self.config.post_norm:
hidden_states = self.post_trunk_norm(hidden_states)
hidden_states = self.merger(hidden_states)
return hidden_states
import asyncio
import math
import re
from typing import Dict, List, Union
from PIL import Image
from sglang.srt.models.dots_vlm import DotsVLMForCausalLM
from sglang.srt.multimodal.processors.base_processor import (
BaseMultimodalProcessor,
MultimodalSpecialTokens,
)
from sglang.srt.multimodal.processors.qwen_vl import resize_image_async
class DotsVLMImageProcessor(BaseMultimodalProcessor):
models = [DotsVLMForCausalLM]
def __init__(self, hf_config, server_args, _processor, *args, **kwargs):
super().__init__(hf_config, server_args, _processor, *args, **kwargs)
# The single, pre-expanded image token.
self.IMAGE_TOKEN = "<|img|><|imgpad|><|endofimg|>"
# The regex that matches expanded image tokens.
self.IMAGE_TOKEN_REGEX = re.compile(r"<\|img\|>(?:<\|imgpad\|>)+<\|endofimg\|>")
assert len(_processor.tokenizer.encode("<|img|>")) == 1
self.im_start_id = _processor.tokenizer.encode("<|img|>")[0]
self.im_end_id = _processor.tokenizer.encode("<|endofimg|>")[0]
self.image_token_id = _processor.tokenizer.encode("<|imgpad|>")[0]
self.IM_TOKEN_ID = self.image_token_id
self.IM_START_ID = self.im_start_id
self.IM_END_ID = self.im_end_id
vision_config = hf_config.vision_config
patch_size = vision_config.patch_size
merge_size = vision_config.spatial_merge_size
self.IMAGE_FACTOR = patch_size * merge_size
self.MIN_PIXELS = _processor.image_processor.min_pixels
self.MAX_PIXELS = _processor.image_processor.max_pixels
self.MAX_RATIO = 200
self.mm_tokens = MultimodalSpecialTokens(
image_token=self.IMAGE_TOKEN,
image_token_id=self.image_token_id,
image_token_regex=self.IMAGE_TOKEN_REGEX,
).build(_processor)
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes, Dict]],
input_text,
request_obj,
max_req_input_len,
*args,
**kwargs,
):
if isinstance(image_data, str):
image_data = [image_data]
if (
isinstance(image_data, list)
and image_data
and isinstance(image_data[0], list)
):
image_data = sum(image_data, [])
base_output = self.load_mm_data(
prompt=input_text,
image_data=image_data,
multimodal_tokens=self.mm_tokens,
)
# Qwen-specific: resize images if they are raw Image objects
if base_output.images and isinstance(base_output.images[0], Image.Image):
resize_tasks = [
resize_image_async(
image,
min_pixels=self.MIN_PIXELS,
max_pixels=self.MAX_PIXELS,
size_factor=self.IMAGE_FACTOR,
)
for image in base_output.images
]
base_output.images = await asyncio.gather(*resize_tasks)
combined_mm_item, input_ids, _ = self.process_and_combine_mm_data(
base_output, self.mm_tokens
)
if combined_mm_item is None:
return None
return {
"input_ids": input_ids.tolist(),
"mm_items": combined_mm_item,
"im_start_id": self.im_start_id,
"im_end_id": self.im_end_id,
"im_token_id": self.image_token_id,
}
......@@ -67,10 +67,15 @@ def smart_resize(
return h_bar, w_bar
def resize_image(image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
def resize_image(
image,
min_pixels: int = MIN_PIXELS,
max_pixels: int = MAX_PIXELS,
size_factor: int = IMAGE_FACTOR,
) -> Image.Image:
width, height = image.size
min_pixels = MIN_PIXELS
max_pixels = MAX_PIXELS
min_pixels = min_pixels
max_pixels = max_pixels
resized_height, resized_width = smart_resize(
height,
width,
......@@ -97,8 +102,13 @@ def floor_by_factor(number: int, factor: int) -> int:
return math.floor(number / factor) * factor
async def resize_image_async(image):
return resize_image(image)
async def resize_image_async(
image,
min_pixels: int = MIN_PIXELS,
max_pixels: int = MAX_PIXELS,
size_factor: int = IMAGE_FACTOR,
):
return resize_image(image, min_pixels, max_pixels, size_factor)
def smart_nframes(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment