Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
1ab6be1b
Unverified
Commit
1ab6be1b
authored
Jun 19, 2025
by
Ata Fatahi
Committed by
GitHub
Jun 19, 2025
Browse files
Purge VerlEngine (#7326)
Signed-off-by:
Ata Fatahi
<
immrata@gmail.com
>
parent
4df5fc21
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
0 additions
and
680 deletions
+0
-680
examples/runtime/engine/offline_batch_inference_torchrun.py
examples/runtime/engine/offline_batch_inference_torchrun.py
+0
-81
python/sglang/srt/entrypoints/http_server_engine.py
python/sglang/srt/entrypoints/http_server_engine.py
+0
-3
python/sglang/srt/entrypoints/verl_engine.py
python/sglang/srt/entrypoints/verl_engine.py
+0
-179
test/srt/run_suite.py
test/srt/run_suite.py
+0
-2
test/srt/test_verl_engine_server.py
test/srt/test_verl_engine_server.py
+0
-415
No files found.
examples/runtime/engine/offline_batch_inference_torchrun.py
deleted
100644 → 0
View file @
4df5fc21
import
datetime
import
os
import
sys
from
torch.distributed.device_mesh
import
init_device_mesh
from
sglang.srt.entrypoints.verl_engine
import
VerlEngine
def
run
():
"""
Example command:
```
torchrun --nproc_per_node=8 offline_batch_inference_torchrun.py
```
"""
local_rank
=
int
(
os
.
environ
[
"LOCAL_RANK"
])
rank
=
int
(
os
.
environ
[
"RANK"
])
world_size
=
int
(
os
.
environ
[
"WORLD_SIZE"
])
def
_log
(
text
):
t
=
datetime
.
datetime
.
now
().
strftime
(
"%H:%M:%S"
)
print
(
f
"[
{
t
}
] [rank=
{
rank
}
]
{
text
}
"
)
_log
(
f
'start
{
local_rank
=
}
{
rank
=
}
{
world_size
=
}
{
sys
.
argv
=
}
{
os
.
environ
.
get
(
"CUDA_VISIBLE_DEVICES"
)
}
'
)
tp_size
=
4
dp_size
=
2
assert
world_size
==
tp_size
*
dp_size
device_mesh_kwargs
=
dict
(
mesh_shape
=
(
tp_size
,
dp_size
,
1
),
mesh_dim_names
=
[
"tp"
,
"dp"
,
"pp"
]
)
device_mesh_cpu
=
init_device_mesh
(
"cpu"
,
**
device_mesh_kwargs
)
_log
(
f
"
{
device_mesh_cpu
=
}
"
)
tp_rank
=
device_mesh_cpu
.
get_local_rank
(
"tp"
)
dp_rank
=
device_mesh_cpu
.
get_local_rank
(
"dp"
)
_log
(
f
"
{
tp_rank
=
}
{
tp_size
=
}
;
{
dp_rank
=
}
{
dp_size
=
}
"
)
model_name
,
mem_fraction_static
=
"meta-llama/Llama-3.2-1B-Instruct"
,
0.1
# model_name, mem_fraction_static = "meta-llama/Llama-3.1-70B-Instruct", 0.9 # test large models
# model_name, mem_fraction_static = "deepseek-ai/DeepSeek-V2-Lite", 0.8
for
k
in
[
"TORCHELASTIC_USE_AGENT_STORE"
]:
if
k
in
os
.
environ
:
del
os
.
environ
[
k
]
fragment
=
VerlEngine
(
model_path
=
model_name
,
mem_fraction_static
=
mem_fraction_static
,
device_mesh_cpu
=
device_mesh_cpu
[
"tp"
],
base_gpu_id
=
dp_rank
,
gpu_id_step
=
dp_size
,
port
=
30000
,
# for DeepSeek-V2-Lite + DP Attention
# enable_dp_attention=True, port=30000 + dp_rank * 100,
)
_log
(
f
"
{
fragment
=
}
"
)
prompt_all
=
[
[
"1+1=2, 1+2=3, 1+3=4, 1+4="
,
"9-1=8, 8-1=7, 7-1="
],
[
"2*1=2, 2*2=4, 2*3="
,
"8/2=4, 6/2="
],
]
prompt
=
prompt_all
[
dp_rank
]
output
=
fragment
.
generate
(
prompt
=
prompt
,
sampling_params
=
dict
(
max_new_tokens
=
16
,
temperature
=
0.0
),
)
_log
(
f
"
{
prompt
=
}
{
output
=
}
"
)
fragment
.
shutdown
()
_log
(
f
"End script"
)
if
__name__
==
"__main__"
:
run
()
python/sglang/srt/entrypoints/http_server_engine.py
View file @
1ab6be1b
...
...
@@ -64,11 +64,9 @@ class HttpServerEngineAdapter(EngineBase):
def
_make_request
(
self
,
endpoint
:
str
,
payload
:
Optional
[
dict
]
=
None
):
"""Make a POST request to the specified endpoint with the given payload.
Args:
endpoint: The API endpoint to call
payload: The JSON payload to send (default: empty dict)
Returns:
The JSON response from the server
"""
...
...
@@ -85,7 +83,6 @@ class HttpServerEngineAdapter(EngineBase):
):
"""
Update model weights from tensor data. The HTTP server will only post meta data, and the real weights will be copied directly from GPUs.
Note: The model should be on GPUs rather than CPU for this functionality to work properly.
If you encounter issues, ensure your model is loaded on GPU devices rather than CPU.
"""
...
...
python/sglang/srt/entrypoints/verl_engine.py
deleted
100644 → 0
View file @
4df5fc21
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import
os
from
typing
import
Dict
,
Iterable
,
List
,
Literal
,
Optional
,
Tuple
,
Union
import
torch
import
torch.distributed
as
dist
from
PIL.Image
import
Image
from
torch.distributed.tensor
import
DeviceMesh
,
DTensor
from
sglang.srt.entrypoints.engine
import
Engine
from
sglang.srt.entrypoints.http_server_engine
import
HttpServerEngineAdapter
from
sglang.srt.model_executor.model_runner
import
LocalSerializedTensor
from
sglang.srt.patch_torch
import
monkey_patch_torch_reductions
from
sglang.srt.utils
import
MultiprocessingSerializer
,
broadcast_pyobj
class
VerlEngine
:
def
__init__
(
self
,
device_mesh_cpu
:
DeviceMesh
,
nnodes
:
int
=
1
,
backend
:
Literal
[
"engine"
,
"server"
]
=
"engine"
,
**
kwargs
,
):
monkey_patch_torch_reductions
()
self
.
_device_mesh_cpu
=
device_mesh_cpu
self
.
_tp_rank
=
device_mesh_cpu
.
get_local_rank
()
self
.
_rank
=
device_mesh_cpu
.
get_rank
()
self
.
_tp_size
=
device_mesh_cpu
.
size
()
tp_size_per_node
=
self
.
_tp_size
//
nnodes
node_rank
=
self
.
_tp_rank
//
tp_size_per_node
first_rank_in_node
=
self
.
_tp_rank
%
tp_size_per_node
==
0
# Common engine keyword arguments
engine_kwargs
=
dict
(
**
kwargs
,
tp_size
=
self
.
_tp_size
,
node_rank
=
node_rank
,
nnodes
=
nnodes
)
if
backend
==
"engine"
:
if
first_rank_in_node
:
os
.
environ
[
"SGLANG_BLOCK_NONZERO_RANK_CHILDREN"
]
=
"0"
self
.
_engine
=
Engine
(
**
engine_kwargs
)
else
:
self
.
_engine
=
None
elif
backend
==
"server"
:
if
self
.
_tp_rank
==
0
:
self
.
_engine
=
HttpServerEngineAdapter
(
**
engine_kwargs
)
else
:
self
.
_engine
=
None
else
:
raise
ValueError
(
f
"Unsupported backend:
{
backend
}
"
)
dist
.
barrier
(
group
=
self
.
_device_mesh_cpu
.
get_group
())
def
generate
(
self
,
# The input prompt. It can be a single prompt or a batch of prompts.
prompt
:
Optional
[
Union
[
List
[
str
],
str
]]
=
None
,
sampling_params
:
Optional
[
Union
[
List
[
Dict
],
Dict
]]
=
None
,
# The token ids for text; one can either specify text or input_ids.
input_ids
:
Optional
[
Union
[
List
[
List
[
int
]],
List
[
int
]]]
=
None
,
# The image input. It can be an image instance, file name, URL, or base64 encoded string.
# Can be formatted as:
# - Single image for a single request
# - List of images (one per request in a batch)
# - List of lists of images (multiple images per request)
# See also python/sglang/srt/utils.py:load_image for more details.
image_data
:
Optional
[
Union
[
List
[
List
[
Union
[
Image
,
str
]]],
List
[
Union
[
Image
,
str
]],
Union
[
Image
,
str
],
]
]
=
None
,
return_logprob
:
Optional
[
Union
[
List
[
bool
],
bool
]]
=
False
,
logprob_start_len
:
Optional
[
Union
[
List
[
int
],
int
]]
=
None
,
top_logprobs_num
:
Optional
[
Union
[
List
[
int
],
int
]]
=
None
,
token_ids_logprob
:
Optional
[
Union
[
List
[
List
[
int
]],
List
[
int
]]]
=
None
,
lora_path
:
Optional
[
List
[
Optional
[
str
]]]
=
None
,
custom_logit_processor
:
Optional
[
Union
[
List
[
str
],
str
]]
=
None
,
)
->
Dict
:
"""
The arguments of this function is the same as `sglang/srt/managers/io_struct.py::GenerateReqInput`.
Please refer to `GenerateReqInput` for the documentation.
"""
if
self
.
_tp_rank
==
0
:
output
=
self
.
_engine
.
generate
(
prompt
=
prompt
,
sampling_params
=
sampling_params
,
input_ids
=
input_ids
,
image_data
=
image_data
,
return_logprob
=
return_logprob
,
logprob_start_len
=
logprob_start_len
,
top_logprobs_num
=
top_logprobs_num
,
token_ids_logprob
=
token_ids_logprob
,
lora_path
=
lora_path
,
custom_logit_processor
=
custom_logit_processor
,
)
else
:
output
=
None
# Most naive implementation, can extract tensor and send via gloo if too slow
[
output
]
=
broadcast_pyobj
(
data
=
[
output
],
rank
=
self
.
_rank
,
dist_group
=
self
.
_device_mesh_cpu
.
get_group
(),
src
=
self
.
_device_mesh_cpu
.
mesh
[
0
].
item
(),
force_cpu_device
=
False
,
)
return
output
def
update_weights_from_tensor
(
self
,
named_tensors
:
Iterable
[
Tuple
[
str
,
torch
.
Tensor
]],
load_format
:
Optional
[
str
]
=
None
,
):
# Most naive implementation, can optimize a lot if it is bottleneck
for
tensor_index
,
(
name
,
tensor
)
in
enumerate
(
named_tensors
):
serialized_tensor
=
MultiprocessingSerializer
.
serialize
(
_preprocess_tensor_for_update_weights
(
tensor
)
)
if
self
.
_tp_rank
==
0
:
gathered_serialized_tensors
=
[
None
for
_
in
range
(
self
.
_tp_size
)]
else
:
gathered_serialized_tensors
=
None
dist
.
gather_object
(
obj
=
serialized_tensor
,
object_gather_list
=
gathered_serialized_tensors
,
dst
=
self
.
_device_mesh_cpu
.
mesh
.
tolist
()[
0
],
group
=
self
.
_device_mesh_cpu
.
get_group
(),
)
if
self
.
_tp_rank
==
0
:
self
.
_engine
.
update_weights_from_tensor
(
named_tensors
=
[
(
name
,
LocalSerializedTensor
(
values
=
gathered_serialized_tensors
),
)
],
load_format
=
load_format
,
flush_cache
=
False
,
)
if
self
.
_tp_rank
==
0
:
self
.
_engine
.
flush_cache
()
def
release_memory_occupation
(
self
):
if
self
.
_tp_rank
==
0
:
self
.
_engine
.
release_memory_occupation
()
def
resume_memory_occupation
(
self
):
if
self
.
_tp_rank
==
0
:
self
.
_engine
.
resume_memory_occupation
()
def
shutdown
(
self
):
if
self
.
_engine
is
not
None
:
self
.
_engine
.
shutdown
()
def
_preprocess_tensor_for_update_weights
(
tensor
:
torch
.
Tensor
):
if
isinstance
(
tensor
,
DTensor
):
return
tensor
.
full_tensor
()
return
tensor
test/srt/run_suite.py
View file @
1ab6be1b
...
...
@@ -144,7 +144,6 @@ suites = {
TestFile
(
"test_moe_ep.py"
,
181
),
TestFile
(
"test_patch_torch.py"
,
19
),
TestFile
(
"test_update_weights_from_distributed.py"
,
103
),
TestFile
(
"test_verl_engine_2_gpu.py"
,
64
),
TestFile
(
"test_release_memory_occupation.py"
,
44
),
],
"per-commit-2-gpu-amd"
:
[
...
...
@@ -157,7 +156,6 @@ suites = {
"per-commit-4-gpu"
:
[
TestFile
(
"test_local_attn.py"
,
250
),
TestFile
(
"test_pp_single_node.py"
,
150
),
TestFile
(
"test_verl_engine_4_gpu.py"
,
64
),
],
"per-commit-4-gpu-amd"
:
[
TestFile
(
"test_pp_single_node.py"
,
150
),
...
...
test/srt/test_verl_engine_server.py
deleted
100644 → 0
View file @
4df5fc21
import
multiprocessing
import
multiprocessing
as
mp
import
os
import
random
import
time
import
traceback
import
unittest
from
multiprocessing
import
Process
import
requests
import
torch
from
openai
import
OpenAI
from
torch.distributed.device_mesh
import
init_device_mesh
from
torch.distributed.fsdp
import
CPUOffload
from
torch.distributed.fsdp
import
FullyShardedDataParallel
as
FSDP
from
torch.distributed.fsdp
import
MixedPrecision
from
torch.distributed.fsdp.api
import
(
ShardedStateDictConfig
,
ShardingStrategy
,
StateDictType
,
)
from
transformers
import
AutoModelForCausalLM
from
sglang.srt.entrypoints.verl_engine
import
VerlEngine
from
sglang.srt.hf_transformers_utils
import
get_tokenizer
from
sglang.srt.server_args
import
ServerArgs
from
sglang.srt.utils
import
is_port_available
from
sglang.test.runners
import
(
HFRunner
,
SRTRunner
,
check_close_model_outputs
,
get_dtype_str
,
)
from
sglang.test.test_utils
import
CustomTestCase
,
find_available_port
,
is_in_ci
_MAX_NEW_TOKENS
=
8
_PROMPTS
=
[
"1+1=2, 1+2=3, 1+3=4, 1+4=5, 1+5="
,
"1*1=1, 1*2=2, 1*3=3, 1*4=4, 1*5="
]
_TORCH_DTYPE
=
torch
.
float16
# Set to false to temporarily debug issues unrelated to weight update
_ENABLE_UPDATE_WEIGHTS
=
True
CI_MODELS
=
[
dict
(
model_path
=
"meta-llama/Llama-3.1-8B-Instruct"
),
# Fail to run gemma-2-2b after transformers==4.48.3 -> 4.50.0
# dict(model_path="google/gemma-2-2b"),
]
ALL_OTHER_MODELS
=
[
dict
(
model_path
=
"meta-llama/Llama-3.2-1B-Instruct"
,
tp_size
=
1
),
dict
(
model_path
=
"Qwen/Qwen2-1.5B"
),
# dict(
# model_path="Qwen/Qwen2.5-14B-Instruct",
# mem_fraction_static=0.4,
# tp_size=8,
# tight_memory=True,
# decode_tolerance=1.3,
# ), # test_generation_models.py same config (qwen + tp=8) gives 1.22 decode error
dict
(
model_path
=
"HuggingFaceTB/SmolLM-135M-Instruct"
,
tp_size
=
3
),
# dict(model_path="allenai/OLMo-1B-0724-hf"),
# dict(
# model_path="THUDM/glm-4-9b-chat",
# mem_fraction_static=0.1,
# tp_size=8,
# tight_memory=True,
# ),
# dict(model_path="allenai/OLMo-2-1124-7B-Instruct"),
# dict(
# model_path="ibm-granite/granite-3.0-2b-instruct",
# prefill_tolerance=0.22,
# decode_tolerance=0.22,
# ),
]
# This port is used for HTTP API communication with the VerlEngine server
# It handles client requests for text generation, weight updates, and memory management
# This port must be available and not used by other processes
PORT
=
find_available_port
(
2345
)
# Master port is used for PyTorch's distributed communication setup
# It enables tensor-parallel processes to communicate with each other
# Default is 23456, but we find an available port dynamically in assert_fragment_e2e_execution
# This port is critical for torch.distributed.init_process_group to function properly
# Each test needs a unique master_port to avoid conflicts between parallel test executions
# master_port = find_available_port(23456) # This is set in assert_fragment_e2e_execution method
class
TestVerlEngine
(
CustomTestCase
):
@
classmethod
def
setUpClass
(
cls
):
multiprocessing
.
set_start_method
(
"spawn"
)
def
assert_fragment_e2e_execution
(
self
,
index
:
int
,
model_path
:
str
,
mem_fraction_static
:
float
=
0.4
,
tp_size
:
int
=
2
,
tight_memory
:
bool
=
False
,
prefill_tolerance
:
float
=
0.1
,
decode_tolerance
:
float
=
0.1
,
):
"""
Tests VerlEngine with tensor parallelism across multiple processes.
Spawns tp_size processes to test distributed execution, including:
- Model inference via direct API and HTTP server
- Weight updating functionality
- Memory management (release/resume)
The test validates output correctness against a reference implementation
within specified tolerance bounds.
Parameters:
-----------
index: int - Test index for logging
model_path: str - HuggingFace model identifier
mem_fraction_static: float - Memory fraction for static tensors
tp_size: int - Number of tensor parallel processes
tight_memory: bool - Enable memory optimization
prefill_tolerance: float - Max error for prefill computation
decode_tolerance: float - Max error for decoding computation
"""
master_port
=
find_available_port
(
23456
)
print
(
f
"assert_fragment_e2e_execution START
{
index
=
}
{
model_path
=
}
"
)
processes
=
[]
output_reader
,
output_writer
=
mp
.
Pipe
(
duplex
=
False
)
for
tp_rank
in
range
(
tp_size
):
p
=
Process
(
target
=
_run_subprocess
,
kwargs
=
dict
(
tp_rank
=
tp_rank
,
tp_size
=
tp_size
,
master_port
=
master_port
,
output_writer
=
output_writer
,
model_path
=
model_path
,
mem_fraction_static
=
mem_fraction_static
,
tight_memory
=
tight_memory
,
prefill_tolerance
=
prefill_tolerance
,
decode_tolerance
=
decode_tolerance
,
),
)
p
.
start
()
processes
.
append
(
p
)
for
_
in
range
(
tp_size
):
self
.
assertTrue
(
output_reader
.
recv
(),
f
"Subprocess has error, please see logs above. (
{
index
=
}
{
model_path
=
}
)"
,
)
for
p
in
processes
:
p
.
join
()
def
test_models
(
self
):
"""
Orchestrates end-to-end testing across configured model sets.
In CI environments: Randomly selects one model for faster testing.
In development: Tests all configured models for comprehensive validation.
Each model configuration specifies model path, memory settings,
tensor-parallel size, and error tolerance bounds.
"""
test_models
=
ALL_OTHER_MODELS
if
is_in_ci
():
# Randomly select one model in CI for faster testing
test_models
=
[
random
.
choice
(
ALL_OTHER_MODELS
)]
# Test all models in development environment
print
(
f
"Development environment: Testing all
{
len
(
ALL_OTHER_MODELS
)
}
models"
)
for
index
,
model_info
in
enumerate
(
test_models
):
self
.
assert_fragment_e2e_execution
(
index
=
index
,
**
model_info
)
def
_run_subprocess
(
tp_rank
:
int
,
tp_size
:
int
,
master_port
:
int
,
output_writer
,
model_path
:
str
,
mem_fraction_static
:
float
,
tight_memory
:
bool
,
prefill_tolerance
:
float
,
decode_tolerance
:
float
,
):
"""
Executes a single tensor-parallel process for testing VerlEngine.
Performs the core test operations:
1. Initializes distributed environment
2. Loads HuggingFace model for reference
3. Tests VerlEngine API (generation, memory management, weight updates)
4. Tests OpenAI-compatible endpoints on rank 0
Reports success/failure via output_writer pipe.
Parameters:
tp_rank: int - Process rank in tensor parallel group
tp_size: int - Total processes in tensor parallel group
master_port: int - Port for distributed communication
output_writer - Pipe for result communication
model_path: str - HuggingFace model identifier
mem_fraction_static: float - Static memory allocation fraction
tight_memory: bool - Memory optimization flag
prefill_tolerance: float - Acceptable prefill error
decode_tolerance: float - Acceptable decode error
"""
try
:
print
(
f
"subprocess[
{
tp_rank
=
}
] Start
{
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
)
=
}
"
)
os
.
environ
[
"MASTER_ADDR"
]
=
"localhost"
os
.
environ
[
"MASTER_PORT"
]
=
str
(
master_port
)
torch
.
distributed
.
init_process_group
(
rank
=
tp_rank
,
world_size
=
tp_size
)
torch
.
cuda
.
set_device
(
tp_rank
)
mesh_kwargs
=
dict
(
mesh_shape
=
(
tp_size
,
1
),
mesh_dim_names
=
[
"tp"
,
"pp"
])
inference_device_mesh_device
=
init_device_mesh
(
"cuda"
,
**
mesh_kwargs
)
inference_device_mesh_cpu
=
init_device_mesh
(
"cpu"
,
**
mesh_kwargs
)
# Print basic information about this subprocess including:
# - Current tensor-parallel rank
# - Device mesh configuration for both CUDA and CPU
# - This subprocess's role in testing tensor-parallel execution
# - How it contributes to the distributed model testing
print
(
f
"subprocess[
{
tp_rank
=
}
] initialized for VerlEngine testing - "
f
"Role: Shard
{
tp_rank
+
1
}
/
{
tp_size
}
of tensor-parallel model execution | "
f
"Device meshes: CUDA=
{
inference_device_mesh_device
}
, CPU=
{
inference_device_mesh_cpu
}
"
)
# hf model is used for comparison
hf_model
=
AutoModelForCausalLM
.
from_pretrained
(
model_path
,
torch_dtype
=
_TORCH_DTYPE
,
trust_remote_code
=
True
).
cuda
()
hf_tokenizer
=
get_tokenizer
(
model_path
,
trust_remote_code
=
True
)
hf_outputs
=
HFRunner
.
forward_generation_raw
(
base_model
=
hf_model
,
prompts
=
_PROMPTS
,
max_new_tokens
=
_MAX_NEW_TOKENS
,
tokenizer
=
hf_tokenizer
,
lora_paths
=
None
,
torch_dtype
=
_TORCH_DTYPE
,
output_str_only
=
False
,
)
if
_ENABLE_UPDATE_WEIGHTS
:
if
tight_memory
:
# If tight_memory is True, we need to move the model to CPU to save memory
hf_model
.
cpu
()
torch
.
cuda
.
empty_cache
()
# test update weights
print
(
f
"subprocess[
{
tp_rank
=
}
] get_fsdp_state_dict"
,
flush
=
True
)
fsdp_state_dict
=
_get_fsdp_state_dict
(
hf_model
=
hf_model
,
tp_size
=
tp_size
)
engine
=
VerlEngine
(
model_path
=
model_path
,
load_format
=
"dummy"
if
_ENABLE_UPDATE_WEIGHTS
else
"auto"
,
mem_fraction_static
=
mem_fraction_static
,
random_seed
=
42
,
trust_remote_code
=
True
,
dtype
=
get_dtype_str
(
_TORCH_DTYPE
),
device_mesh_cpu
=
inference_device_mesh_cpu
[
"tp"
],
backend
=
"server"
,
enable_memory_saver
=
True
,
port
=
PORT
,
)
# test direct generate API with multiple different requests
print
(
f
"subprocess[
{
tp_rank
=
}
] testing direct generate API with multiple requests"
)
# Request 1: Basic generation with temperature
print
(
f
"subprocess[
{
tp_rank
=
}
] test request 1: Basic generation"
)
direct_response
=
engine
.
generate
(
prompt
=
"Hello, world!"
,
sampling_params
=
{
"temperature"
:
0.7
,
"max_new_tokens"
:
20
},
)
print
(
f
"Response 1:
{
direct_response
}
"
)
# Request 2: Zero temperature (greedy) generation
print
(
f
"subprocess[
{
tp_rank
=
}
] test request 2: Greedy generation"
)
direct_response
=
engine
.
generate
(
prompt
=
"Complete this sequence: 1, 2, 3,"
,
sampling_params
=
{
"temperature"
:
0.0
,
"max_new_tokens"
:
10
},
)
print
(
f
"Response 2:
{
direct_response
}
"
)
# Request 3: Batch generation
print
(
f
"subprocess[
{
tp_rank
=
}
] test request 3: Batch generation"
)
batch_response
=
engine
.
generate
(
prompt
=
[
"Translate 'hello' to French:"
,
"Translate 'goodbye' to Spanish:"
],
sampling_params
=
{
"temperature"
:
0.8
,
"max_new_tokens"
:
15
},
)
print
(
f
"Response 3:
{
batch_response
}
"
)
# test memory occupation APIs
print
(
f
"subprocess[
{
tp_rank
=
}
] testing memory occupation APIs"
)
engine
.
release_memory_occupation
()
print
(
"Memory released"
)
# time.sleep(1)
engine
.
resume_memory_occupation
()
print
(
"Memory resumed"
)
# openai API test for reference
torch
.
distributed
.
barrier
()
if
tp_rank
==
0
:
client
=
OpenAI
(
api_key
=
"None"
,
base_url
=
f
"http://localhost:
{
PORT
}
/v1"
)
print
(
client
.
models
.
list
().
data
[
0
].
id
)
# Multiple HTTP API requests
print
(
"Testing HTTP API with multiple requests"
)
# Request 1
url
=
f
"http://localhost:
{
PORT
}
/generate"
data
=
{
"text"
:
"1*1=1, 1*2=2, 1*3=3, 1*4=4, 1*5="
}
response
=
requests
.
post
(
url
,
json
=
data
)
print
(
f
"HTTP Response 1:
{
response
.
json
()
}
"
)
# Request 2
data
=
{
"text"
:
"The capital of France is"
,
"sampling_params"
:
{
"temperature"
:
0.2
},
}
response
=
requests
.
post
(
url
,
json
=
data
)
print
(
f
"HTTP Response 2:
{
response
.
json
()
}
"
)
# Request 3
data
=
{
"text"
:
"List three colors:"
,
"sampling_params"
:
{
"top_p"
:
0.95
,
"max_new_tokens"
:
25
},
}
response
=
requests
.
post
(
url
,
json
=
data
)
print
(
f
"HTTP Response 3:
{
response
.
json
()
}
"
)
if
_ENABLE_UPDATE_WEIGHTS
:
print
(
f
"subprocess[
{
tp_rank
=
}
] call update_weights_from_tensor"
,
flush
=
True
)
engine
.
update_weights_from_tensor
(
[(
k
,
v
)
for
k
,
v
in
fsdp_state_dict
.
items
()]
)
# Final generation test after weight update
print
(
f
"subprocess[
{
tp_rank
=
}
] testing generation after weight update"
)
direct_response
=
engine
.
generate
(
prompt
=
"After weight update: Hello, world!"
,
sampling_params
=
{
"temperature"
:
0.7
,
"max_new_tokens"
:
20
},
)
print
(
f
"Post-update response:
{
direct_response
}
"
)
execution_ok
=
True
except
Exception
as
e
:
print
(
f
"subprocess[
{
tp_rank
=
}
] has error:
{
e
}
"
,
flush
=
True
)
traceback
.
print_exc
()
execution_ok
=
False
output_writer
.
send
(
execution_ok
)
output_writer
.
close
()
engine
.
shutdown
()
print
(
f
"subprocess[
{
tp_rank
=
}
] end"
,
flush
=
True
)
# Adapted from https://github.com/volcengine/verl/blob/main/tests/rollout/run_fsdp_vllm.py
def
_get_fsdp_state_dict
(
hf_model
,
tp_size
:
int
):
"""
Creates a sharded state dictionary for weight update testing.
Wraps the HuggingFace model with FSDP (FullyShardedDataParallel),
configures precision settings, and returns a sharded state dict
for testing VerlEngine's weight update capabilities.
Parameters:
hf_model - HuggingFace model to wrap
tp_size: int - Number of tensor-parallel shards
Returns:
dict - Sharded state dict for update_weights_from_tensor
"""
device_mesh
=
init_device_mesh
(
"cuda"
,
mesh_shape
=
(
tp_size
,),
mesh_dim_names
=
[
"fsdp"
]
)
mixed_precision
=
MixedPrecision
(
param_dtype
=
torch
.
bfloat16
,
reduce_dtype
=
torch
.
float32
,
buffer_dtype
=
torch
.
float32
,
)
fsdp_model
=
FSDP
(
hf_model
,
use_orig_params
=
True
,
auto_wrap_policy
=
None
,
device_id
=
torch
.
cuda
.
current_device
(),
sharding_strategy
=
ShardingStrategy
.
FULL_SHARD
,
mixed_precision
=
mixed_precision
,
cpu_offload
=
CPUOffload
(
offload_params
=
False
),
sync_module_states
=
False
,
device_mesh
=
device_mesh
,
)
print
(
f
"
{
fsdp_model
=
}
"
)
FSDP
.
set_state_dict_type
(
fsdp_model
,
state_dict_type
=
StateDictType
.
SHARDED_STATE_DICT
,
state_dict_config
=
ShardedStateDictConfig
(),
)
return
fsdp_model
.
state_dict
()
if
__name__
==
"__main__"
:
unittest
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment